EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Single Atom Nanoelectronics

Download or read book Single Atom Nanoelectronics written by Enrico Prati and published by CRC Press. This book was released on 2016-04-19 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also

Book Towards Solid State Quantum Repeaters

Download or read book Towards Solid State Quantum Repeaters written by Kristiaan De Greve and published by Springer Science & Business Media. This book was released on 2013-04-16 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Towards Solid-State Quantum Repeaters: Ultrafast, Coherent Optical Control and Spin-Photon Entanglement in Charged InAs Quantum Dots summarizes several state-of-the-art coherent spin manipulation experiments in III-V quantum dots. Both high-fidelity optical manipulation, decoherence due to nuclear spins and the spin coherence extraction are discussed, as is the generation of entanglement between a single spin qubit and a photonic qubit. The experimental results are analyzed and discussed in the context of future quantum technologies, such as quantum repeaters. Single spins in optically active semiconductor host materials have emerged as leading candidates for quantum information processing (QIP). The quantum nature of the spin allows for encoding of stationary, memory quantum bits (qubits), and the relatively weak interaction with the host material preserves the spin coherence. On the other hand, optically active host materials permit direct interfacing with light, which can be used for all-optical qubit manipulation, and for efficiently mapping matter qubits into photonic qubits that are suited for long-distance quantum communication.

Book Manipulating Quantum Systems

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2020-09-14
  • ISBN : 0309499542
  • Pages : 315 pages

Download or read book Manipulating Quantum Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-09-14 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Book Carbon Nanotube Devices

Download or read book Carbon Nanotube Devices written by and published by John Wiley & Sons. This book was released on 2008-05-05 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following on from the first AMN volume, this handy reference and textbook examines the topic of nanosystem design in further detail. It explains the physical and chemical basics behind the design and fabrication of nanodevices, covering all important, recent advances in the field, while introducing nanosystems to less experienced readers. The result is an important source for a fast, accurate overview of the state of the art of nanosystem realization, summarizing further important literature.

Book Spin orbit Coupling Effects in Two Dimensional Electron and Hole Systems

Download or read book Spin orbit Coupling Effects in Two Dimensional Electron and Hole Systems written by Roland Winkler and published by Springer Science & Business Media. This book was released on 2003-10-10 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part provides a general introduction to the electronic structure of quasi-two-dimensional systems with a particular focus on group-theoretical methods. The main part of the monograph is devoted to spin-orbit coupling phenomena at zero and nonzero magnetic fields. Throughout the book, the main focus is on a thorough discussion of the physical ideas and a detailed interpretation of the results. Accurate numerical calculations are complemented by simple and transparent analytical models that capture the important physics.

Book Principles and Methods of Quantum Information Technologies

Download or read book Principles and Methods of Quantum Information Technologies written by Yoshihisa Yamamoto and published by Springer. This book was released on 2015-12-30 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the research and development-related results of the “FIRST” Quantum Information Processing Project, which was conducted from 2010 to 2014 with the support of the Council for Science, Technology and Innovation of the Cabinet Office of the Government of Japan. The project supported 33 research groups and explored five areas: quantum communication, quantum metrology and sensing, coherent computing, quantum simulation, and quantum computing. The book is divided into seven main sections. Parts I through V, which consist of twenty chapters, focus on the system and architectural aspects of quantum information technologies, while Parts VI and VII, which consist of eight chapters, discuss the superconducting quantum circuit, semiconductor spin and molecular spin technologies. Readers will be introduced to new quantum computing schemes such as quantum annealing machines and coherent Ising machines, which have now arisen as alternatives to standard quantum computers and are designed to successfully address NP-hard/NP-complete combinatorial optimization problems, which are ubiquitous and relevant in our modern life. The book offers a balanced mix of theory-based and experimentation-based chapters written by leading researchers. Extensive information is provided on Quantum simulation, which focuses on the implementation of various many-body Hamiltonians in a well-controlled physical system, Quantum key distribution, Quantum repeaters and quantum teleportation, which are indispensable technologies for building quantum networks with various advanced applications and require far more sophisticated experimental techniques to implement.

Book Design of Integrated Circuits for Optical Communications

Download or read book Design of Integrated Circuits for Optical Communications written by Behzad Razavi and published by John Wiley & Sons. This book was released on 2012-09-14 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only book on integrated circuits for optical communications that fully covers High-Speed IOs, PLLs, CDRs, and transceiver design including optical communication The increasing demand for high-speed transport of data has revitalized optical communications, leading to extensive work on high-speed device and circuit design. With the proliferation of the Internet and the rise in the speed of microprocessors and memories, the transport of data continues to be the bottleneck, motivating work on faster communication channels. Design of Integrated Circuits for Optical Communications, Second Edition deals with the design of high-speed integrated circuits for optical communication transceivers. Building upon a detailed understanding of optical devices, the book describes the analysis and design of critical building blocks, such as transimpedance and limiting amplifiers, laser drivers, phase-locked loops, oscillators, clock and data recovery circuits, and multiplexers. The Second Edition of this bestselling textbook has been fully updated with: A tutorial treatment of broadband circuits for both students and engineers New and unique information dealing with clock and data recovery circuits and multiplexers A chapter dedicated to burst-mode optical communications A detailed study of new circuit developments for optical transceivers An examination of recent implementations in CMOS technology This text is ideal for senior graduate students and engineers involved in high-speed circuit design for optical communications, as well as the more general field of wireline communications.

Book Quantum State Diffusion

    Book Details:
  • Author : Ian Percival
  • Publisher : Cambridge University Press
  • Release : 1998-12-10
  • ISBN : 0521620074
  • Pages : 200 pages

Download or read book Quantum State Diffusion written by Ian Percival and published by Cambridge University Press. This book was released on 1998-12-10 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book devoted to quantum state diffusion - suitable for graduate students and researchers.

Book Symmetry and Strain induced Effects in Semiconductors

Download or read book Symmetry and Strain induced Effects in Semiconductors written by Gennadiĭ Levikovich Bir and published by Halsted Press. This book was released on 1974-01-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hybrid Quantum Systems

    Book Details:
  • Author : Yoshiro Hirayama
  • Publisher : Springer Nature
  • Release : 2022-01-06
  • ISBN : 9811666792
  • Pages : 352 pages

Download or read book Hybrid Quantum Systems written by Yoshiro Hirayama and published by Springer Nature. This book was released on 2022-01-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art research on quantum hybridization, manipulation, and measurement in the context of hybrid quantum systems. It covers a broad range of experimental and theoretical topics relevant to quantum hybridization, manipulation, and measurement technologies, including a magnetic field sensor based on spin qubits in diamond NV centers, coherently coupled superconductor qubits, novel coherent couplings between electron and nuclear spin, photons and phonons, and coherent coupling of atoms and photons. Each topic is concisely described by an expert at the forefront of the field, helping readers quickly catch up on the latest advances in fundamental sciences and technologies of hybrid quantum systems, while also providing an essential overview.

Book Advances in Quantum Computation

Download or read book Advances in Quantum Computation written by Kazem Mahdavi and published by American Mathematical Soc.. This book was released on 2009 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Machines  Measurement and Control of Engineered Quantum Systems

Download or read book Quantum Machines Measurement and Control of Engineered Quantum Systems written by Michel Devoret and published by OUP Oxford. This book was released on 2014-06-12 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the lecture notes of courses given at the 2011 summer school in theoretical physics in Les Houches, France, Session XCVI. What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum mechanical phenomena. However, while quantum mechanics must be used to predict the wavelength of a laser and the operation voltage of a transistor, it does not intervene at the level of the signals processed by these systems. Signals involve macroscopic collective variables like voltages and currents in a circuit or the amplitude of the oscillating electric field in an electromagnetic cavity resonator. In a true quantum machine, the signal collective variables, which both inform the outside on the state of the machine and receive controlling instructions, must themselves be treated as quantum operators, just as the position of the electron in a hydrogen atom. Quantum superconducting circuits, quantum dots, and quantum nanomechanical resonators satisfy the definition of quantum machines. These mesoscopic systems exhibit a few collective dynamical variables, whose fluctuations are well in the quantum regime and whose measurement is essentially limited in precision by the Heisenberg uncertainty principle. Other engineered quantum systems based on natural, rather than artificial degrees of freedom can also qualify as quantum machines: trapped ions, single Rydberg atoms in superconducting cavities, and lattices of ultracold atoms. This book provides the basic knowledge needed to understand and investigate the physics of these novel systems.

Book Quantum State Transfer and Network Engineering

Download or read book Quantum State Transfer and Network Engineering written by Georgios M. Nikolopoulos and published by Springer Science & Business Media. This book was released on 2013-10-05 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.

Book Handbook of Natural Computing

Download or read book Handbook of Natural Computing written by Grzegorz Rozenberg and published by Springer. This book was released on 2012-07-09 with total page 2052 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.

Book Organic Optoelectronic Materials

Download or read book Organic Optoelectronic Materials written by Yongfang Li and published by Springer. This book was released on 2015-05-30 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

Book 100 Years of Superconductivity

Download or read book 100 Years of Superconductivity written by Horst Rogalla and published by Taylor & Francis. This book was released on 2011-11-11 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in supe

Book A Short Course on Topological Insulators

Download or read book A Short Course on Topological Insulators written by János K. Asbóth and published by Springer. This book was released on 2016-02-22 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.