EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of a Novel Ultra low Power Implantable Telemetry System

Download or read book Development of a Novel Ultra low Power Implantable Telemetry System written by Fadel M. Mahfouz and published by . This book was released on 2006 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Digitally assisted  Ultra low Power Circuits and Systems for Medical Applications

Download or read book Digitally assisted Ultra low Power Circuits and Systems for Medical Applications written by Jose L. Bohorquez and published by . This book was released on 2010 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, trends in the medical industry have created a growing demand for a variety of implantable medical devices. At the same time, advances in integrated circuits techniques, particularly in CMOS, have opened possibilities for advanced implantable systems that are very small and consume minimal energy. Minimizing the volume of medical implants is important as it allows for less invasive procedures and greater comfort to patients. Minimizing energy consumption is imperative as batteries must last at least a decade without replacement. Two primary functions that consume energy in medical implants are sensor interfaces that collect information from biomedical signals, and radios that allow the implant to communicate with a base-station outside of the body. The general focus of this work was the development of circuits and systems that minimize the size and energy required to carry out these two functions. The first part of this work focuses on laying down the theoretical framework for an ultra-low power radio, including advances to the literature in the area of super-regeneration. The second part includes the design of a transceiver optimized for medical implants, and its implementation in a CMOS process. The final part describes the design of a sensor interface that leverages novel analog and digital techniques to reduce the system's size and improve its functionality. This final part was developed in conjunction with Marcus Yip.

Book Modern Telemetry

    Book Details:
  • Author : Ondrej Krejcar
  • Publisher : BoD – Books on Demand
  • Release : 2011-10-05
  • ISBN : 9533074159
  • Pages : 484 pages

Download or read book Modern Telemetry written by Ondrej Krejcar and published by BoD – Books on Demand. This book was released on 2011-10-05 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems.

Book Near field Wireless Ultra low power System for Passive Biotelemetry Applications

Download or read book Near field Wireless Ultra low power System for Passive Biotelemetry Applications written by Mayukh Bhattacharyya and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Biolink Implantable Telemetry System

    Book Details:
  • Author : National Aeronautics and Space Administration (NASA)
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2018-06-11
  • ISBN : 9781721016204
  • Pages : 56 pages

Download or read book The Biolink Implantable Telemetry System written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-11 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most biotelemetry applications deal with the moderated data rates of biological signals. Few people have studied the problem of transcutaneous data transmission at the rates required by NASA's Life Sciences-Advanced BioTelemetry System (LS-ABTS). Implanted telemetry eliminate the problems associated with wire breaking the skin, and permits experiments with awake and unrestrained subjects. Our goal is to build a low-power 174-216MHz Radio Frequency (RF) transmitter suitable for short range biosensor and implantable use. The BioLink Implantable Telemetry System (BITS) is composed of three major units: an Analog Data Module (ADM), a Telemetry Transmitter Module (TTM), and a Command Receiver Module (CRM). BioLink incorporates novel low-power techniques to implement a monolithic digital RF transmitter operating at 100kbps, using quadrature phase shift keying (QPSK) modulation in the 174-216MHz ISM band. As the ADM will be specific for each application, we focused on solving the problems associated with a monolithic implementation of the TTM and CRM, and this is the emphasis of this report. A system architecture based on a Frequency-Locked Loop (FLL) Frequency Synthesizer is presented, and a novel differential frequency that eliminates the need for a frequency divider is also shown. A self sizing phase modulation scheme suitable for low power implementation was also developed. A full system-level simulation of the FLL was performed and loop filter parameters were determined. The implantable antenna has been designed, simulated and constructed. An implant package compatible with the ABTS requirements is also being proposed. Extensive work performed at 200MHz in 0.5um complementary metal oxide semiconductors (CMOS) showed the feasibility of integrating the RF transmitter circuits in a single chip. The Hajimiri phase noise model was used to optimize the Voltage Controlled Oscillator (VCO) for minimum power consumption. Two test chips were fabricated in a 0.5pm, 3V CMOS proce

Book Development of an Implantable Data Acquisition System

Download or read book Development of an Implantable Data Acquisition System written by Prachi Santosh Sonalkar and published by . This book was released on 2005 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implantable medical devices offer several fascinating possibilities for improving human health. Coupled with advancements in the miniaturization of electronic systems, the array of implantable medical devices will continue to expand. Furthermore, if instrumentation based implants are interfaced to a communication sub-system, the potential exists for wireless microcontroller software updates and real-time data acquisition from integrated sensors which could relay patient health information or implant mechanical conditions to an external system. This thesis focuses on development of such a platform. The current system incorporates a Radio Frequency (RF) telemetry system integrated to an embedded microcontroller with multi-channel data acquisition capabilities. This system employs a XE1201A (Xemics Inc, Switzerland) transceiver chipset providing a bi-directional 405 MHz RF communications link. This transceiver is integrated to an ultra-low power MSP430F149 (Texas Instruments, Dallas TX) microcontroller with 12-bit analog to digital capabilities. In addition, a similar external system is interfaced to a PC for complete control and real-time data acquisition is developed, a custom developed script language is implemented to input required commands for collection of desired data from a particular sensor. The software code and protocol to establish bi-directional communication was developed in ANSI C which is implemented on the microcontroller and the PC interface was developed using LabVIEW (National Instruments, Austin TX). In addition, all ASICs are available in die form to allow for ultra-miniaturization. The system is in the process of being evaluated in a spinal disc implant equipped with strain and temperature sensors. Future work will involve manufacturing the entire system in an ultra-compact package through the use of flip-chip technology.

Book Body Sensor Networks

    Book Details:
  • Author : Guang-Zhong Yang
  • Publisher : Springer
  • Release : 2014-04-16
  • ISBN : 1447163745
  • Pages : 572 pages

Download or read book Body Sensor Networks written by Guang-Zhong Yang and published by Springer. This book was released on 2014-04-16 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last decade has witnessed a rapid surge of interest in new sensing and monitoring devices for wellbeing and healthcare. One key development in this area is wireless, wearable and implantable in vivo monitoring and intervention. A myriad of platforms are now available from both academic institutions and commercial organisations. They permit the management of patients with both acute and chronic symptoms, including diabetes, cardiovascular diseases, treatment of epilepsy and other debilitating neurological disorders. Despite extensive developments in sensing technologies, there are significant research issues related to system integration, sensor miniaturisation, low-power sensor interface, wireless telemetry and signal processing. In the 2nd edition of this popular and authoritative reference on Body Sensor Networks (BSN), major topics related to the latest technological developments and potential clinical applications are discussed, with contents covering. Biosensor Design, Interfacing and Nanotechnology Wireless Communication and Network Topologies Communication Protocols and Standards Energy Harvesting and Power Delivery Ultra-low Power Bio-inspired Processing Multi-sensor Fusion and Context Aware Sensing Autonomic Sensing Wearable, Ingestible Sensor Integration and Exemplar Applications System Integration and Wireless Sensor Microsystems The book also provides a comprehensive review of the current wireless sensor development platforms and a step-by-step guide to developing your own BSN applications through the use of the BSN development kit.

Book Totally Implantable Telemetry Systems

Download or read book Totally Implantable Telemetry Systems written by Stanford University. Integrated Circuits Laboratory and published by . This book was released on 1978 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wireless  Implantable Microsystem for Chronic Bladder Pressure Monitoring

Download or read book Wireless Implantable Microsystem for Chronic Bladder Pressure Monitoring written by Steve J Majerus and published by . This book was released on 2014 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work describes the design and testing of a wireless implantable bladder pressure sensor suitable for chronic implantation in humans. The sensor was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation would particularly benefit from a wireless bladder pressure sensor providing real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The pressure sensing system consists of an implantable microsystem, an external RF receiver, and a wireless battery charger. The implant is small enough to be cystoscopically implanted within the bladder wall, where it is securely held and shielded from the urine stream, protecting both the device and the patient. The implantable microsystem consists of a custom application-specific integrated circuit (ASIC), pressure transducer, rechargeable battery, and wireless telemetry and recharging antennas. Because the battery capacity is extremely limited, the ASIC was designed using an ultra-low-power methodology in which power is dynamically allocated to instrumentation and telemetry circuits by a power management unit. A low-power regulator and clock oscillator set the minimum current draw at 7.5 μA and instrumentation circuitry is operated at low duty cycles to transmit 100-Hz pressure samples while consuming 74 μA. An adaptive transmission activity detector determines the minimum telemetry rate to limit broadcast of unimportant samples. Measured results indicated that the power management circuits produced an average system current of 16 μA while reducing the number of transmitted samples by more than 95% with typical bladder pressure signals. The wireless telemetry range of the system was measured to be 35 cm with a bit-error-rate of 10-3, and the battery was wirelessly recharged at distances up to 20 cm. A novel biocompatible packaging method consisting of a silicone-nylon mesh membrane and a compliant silicone gel was developed to protect the sensor from water ingress while only reducing the sensor sensitivity by 5%. Dynamic offset removal circuitry extended the system dynamic range to 2,900 cm H2O but limited the sensor AC accuracy to 3.7 cm H2O over a frequency range of 0.002 - 50 Hz. The DC accuracy of the sensor was measured to be approximately 2.6 cm H2O (0.9% full-scale). Functionality of wired prototypes was confirmed in feline and canine animal models, and wireless prototypes were implanted in a female calf large-animal model. Measured in vivo pressure recordings of bladder contractions correlated well with reference catheters (r =0.893-0.994).

Book Ultra low power Circuits and Systems for Wearable and Implantable Medical Devices

Download or read book Ultra low power Circuits and Systems for Wearable and Implantable Medical Devices written by Marcus Yip and published by . This book was released on 2013 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in circuits, sensors, and energy storage elements have opened up many new possibilities in the health industry. In the area of wearable devices, the miniaturization of electronics has spurred the rapid development of wearable vital signs, activity, and fitness monitors. Maximizing the time between battery recharge places stringent requirements on power consumption by the device. For implantable devices, the situation is exacerbated by the fact that energy storage capacity is limited by volume constraints, and frequent battery replacement via surgery is undesirable. In this case, the design of energy-efficient circuits and systems becomes even more crucial. This thesis explores the design of energy-efficient circuits and systems for two medical applications. The first half of the thesis focuses on the design and implementation of an ultra-low-power, mixed-signal front-end for a wearable ECG monitor in a 0.18pm CMOS process. A mixed-signal architecture together with analog circuit optimizations enable ultra-low-voltage operation at 0.6V which provides power savings through voltage scaling, and ensures compatibility with state-of-the-art DSPs. The fully-integrated front-end consumes just 2.9[mu]W, which is two orders of magnitude lower than commercially available parts. The second half of this thesis focuses on ultra-low-power system design and energy-efficient neural stimulation for a proof-of-concept fully-implantable cochlear implant. First, implantable acoustic sensing is demonstrated by sensing the motion of a human cadaveric middle ear with a piezoelectric sensor. Second, alternate energy-efficient electrical stimulation waveforms are investigated to reduce neural stimulation power when compared to the conventional rectangular waveform. The energy-optimal waveform is analyzed using a computational nerve fiber model, and validated with in-vivo ECAP recordings in the auditory nerve of two cats and with psychophysical tests in two human cochlear implant users. Preliminary human subject testing shows that charge and energy savings of 20-30% and 15-35% respectively are possible with alternative waveforms. A system-on-chip comprising the sensor interface, reconfigurable sound processor, and arbitrary-waveform neural stimulator is implemented in a 0.18[mu]m high-voltage CMOS process to demonstrate the feasibility of this system. The sensor interface and sound processor consume just 12[mu]W of power, representing just 2% of the overall system power which is dominated by stimulation. As a result, the energy savings from using alternative stimulation waveforms transfer directly to the system.

Book Ultra Low Power Bioelectronics

Download or read book Ultra Low Power Bioelectronics written by Rahul Sarpeshkar and published by Cambridge University Press. This book was released on 2010-02-22 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.

Book Inductive Links for Biomedical Wireless Power and Data Telemetry

Download or read book Inductive Links for Biomedical Wireless Power and Data Telemetry written by Matthew James Schormans and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cardiac Electrophysiology  From Cell to Bedside E Book

Download or read book Cardiac Electrophysiology From Cell to Bedside E Book written by Douglas P. Zipes and published by Elsevier Health Sciences. This book was released on 2013-10-11 with total page 1397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cardiac Electrophysiology: From Cell to Bedside puts the latest knowledge in this subspecialty at your fingertips, giving you a well-rounded, expert grasp of every cardiac electrophysiology issue that affects your patient management. Drs. Zipes, Jalife, and a host of other world leaders in cardiac electrophysiology use a comprehensive, multidisciplinary approach to guide you through all of the most recent cardiac drugs, techniques, and technologies. Consult this title on your favorite e-reader, conduct rapid searches, and adjust font sizes for optimal readability. Compatible with Kindle®, nook®, and other popular devices. Get well-rounded, expert views of every cardiac electrophysiology issue that affects your patient management from preeminent authorities in cardiology, physiology, pharmacology, pediatrics, biophysics, pathology, cardiothoracic surgery, and biomedical engineering from around the world. Visually grasp and easily absorb complex concepts through an attractive full-color design featuring color photos, tables, flow charts, ECGs, and more! Integrate the latest scientific understanding of arrhythmias with the newest clinical applications, to select the right treatment and management options for each patient. Stay current on the latest advancements and developments with sweeping updates and 52 NEW chapters - written by many new authors - on some of the hottest cardiology topics, such as new technologies for the study of the molecular structure of ion channels, molecular genetics, and the development of new imaging, mapping and ablation techniques. Get expert advice from Dr. Douglas P. Zipes - a leading authority in electrophysiology and editor of Braunwald’s Heart Disease and the Heart Rhythm Journal - and Dr. Jose Jalife - a world-renowned leader and researcher in basic and translational cardiac electrophysiology. Access the full text online at Expert Consult, including supplemental text, figures, tables, and video clips.

Book Biomedical Engineering

    Book Details:
  • Author : Carlos Mello
  • Publisher : BoD – Books on Demand
  • Release : 2009-10-01
  • ISBN : 9533070137
  • Pages : 672 pages

Download or read book Biomedical Engineering written by Carlos Mello and published by BoD – Books on Demand. This book was released on 2009-10-01 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Engineering can be seen as a mix of Medicine, Engineering and Science. In fact, this is a natural connection, as the most complicated engineering masterpiece is the human body. And it is exactly to help our “body machine” that Biomedical Engineering has its niche. This book brings the state-of-the-art of some of the most important current research related to Biomedical Engineering. I am very honored to be editing such a valuable book, which has contributions of a selected group of researchers describing the best of their work. Through its 36 chapters, the reader will have access to works related to ECG, image processing, sensors, artificial intelligence, and several other exciting fields.

Book Wireless Biomedical Sensing

Download or read book Wireless Biomedical Sensing written by Vaishnavi Nattar Ranganathan and published by . This book was released on 2018 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work addresses challenges in power delivery, efficient computation and communication to power-constrained wearable and implantable devices. We are surrounded today by over 25 billion smart devices, and this number is constantly increasing. Owing to the shrinking CMOS technology, some of these devices are so small that they can even be worn on the human body or implanted inside it. The sheer number of devices and their drastic minia- turization and integration into the human body posit two major challenges. First, how do we communicate with these numerous small devices? Second, how do we deliver power to them? The wearable or implantable nature of these smart devices only exacerbates these challenges. Since these devices are designed to be worn or implanted, they must be small, comfortable and, most importantly, safe to use. They must be small so that they are dis- crete when worn or can be implanted easily. They must be comfortable so that people can use them for extended periods of time for physiological monitoring, without the devices in- terfering with their normal lifestyle. Finally, they must not cause discomfort by overheating and operate at low power consumption so that they are safe to use. Traditionally, cables were used to power or communicate. However, with the proliferation of smart devices, tethering to communicate with or to recharge them is no longer a practical solution. Bluetooth technology allows some degree of wireless communication with smart devices, but it is a power-hungry technology and thus unsuited for implanted devices. Hence there is a need for reliable communication of data at low power levels. Batteries are currently the most prevalent option for power delivery, but are a less-than-ideal solution. While progress in CMOS technology has reduced size and power consumption of smart devices, the batteries used to power them are still large. With higher energy requirements, larger these batteries become. Even when rechargeable, these batteries have a diminishing eciency over their lifetime of about two to three years. Hence, they are not the best option for powering these billions of devices, especially when they are implanted in the body and need surgery for replacement. One of the solutions to make these devices untethered and battery free is to use wireless power transfer and low-power wireless communication. However, these smart devices used in diverse application have vastly dierent power requirements and communication data rates. Hence, it becomes dicult to standardize ways to wirelessly power and communicate with them. The wireless solutions presented here are applied to two different applications, one wearable and the other implantable, demonstrating the ability to serve diverse requirements. The first application includes a wearable sensing platform that operates with ultra-low power consumption to perform analog sensing of physiological signals and use backscatter communication, which is an ultra-low power communication method, to transmit sensed data. The total power consumption for sensing and communicating data to an external base station is as low as 35 [micro]W to 160 [micro]W. This modular wireless platform is battery- free and can be made in the form of an adhesive bandaid that can sense physiological parameters like heart rate, breathing rate and sense sounds to monitor health conditions. Thus it enables simple, continuous and seamless monitoring of health parameters while a person goes about their everyday tasks. The second application is an implantable platform that can record neural signals from the brain and process them locally to identify events in the signals that can trigger neural stimulations. The requirements for this implantable device are far more complex than the simple wearable application. The implants operate with several 100 mW of power consumption and need several Mbps data rates to transmit the recorded and processed data out to the user. To address the high power and high data rate requirements, this work presents a novel dual-band approach that supports wireless power delivery at high frequency (HF) and backscatter communication at ultra-high frequency (UHF). At the smart implantable device, the dual-band wireless system harvests energy from HF wireless signals while simultaneously communicating data using UHF backscatter. To localize the implant and deliver power to it, a novel low-overhead echolocation method is presented in this work. This method uses reflected parameters on a phased array of wireless power transmitters to locate the wireless device and deliver focussed power to it. The implantable platform is intended for use in two different application domains. First, in neural engineering research where neural interface devices are used to understand, record and map the brain function and to leverage them and develop brain-controlled technology like prosthetic limbs. Second, for treatment and rehabilitation of people suffering from spinal cord injury and chronic neural disorders. An implantable brain-computer-spinal interface (BCSI) is presented in this work, that records neural signals and processes them locally to extract intent. The decoded action intention can be used to trigger stimulation in the spinal cord to reanimate the paralyzed limb and perform the action. In addition, this device is developed as a low-power FPGA-based platform so that it is reconfigurable to enable research in closed-loop algorithms to understand and treat several other neural disorders. We expect that such wireless biomedical sensing can provide a better understanding of physiological parameters and enable treatment for chronic disorders.

Book Wearable and Implantable Medical Devices

Download or read book Wearable and Implantable Medical Devices written by Nilanjan Dey and published by Academic Press. This book was released on 2019-09-06 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wearable and Implantable Medical Devices: Applications and Challenges, Fourth Edition highlights the new aspects of wearable and implanted sensors technology in the healthcare sector and monitoring systems. The book's contributions include several interdisciplinary domains, such as wearable sensors, implanted sensors devices, Internet-of-Things (IoT), security, real-time medical healthcare monitoring, WIBSN design and data management, encryption, and decision-support systems. Contributions emphasize several topics, including real-world applications and the design and implementation of wearable devices. This book demonstrates that this new field has a brilliant future in applied healthcare research and in healthcare monitoring systems. - Includes comprehensive information on wearable and implanted device technology, wearable and implanted sensors design, WIBSN requirements, WIBSN in monitoring systems and security concepts - Highlights machine learning and computing in healthcare monitoring systems based on WIBSN - Includes a multidisciplinary approach to different healthcare applications and their associated challenges based on wearable and implanted technologies