EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cu In1 xGax Se2 Based Thin Film Solar Cells

Download or read book Cu In1 xGax Se2 Based Thin Film Solar Cells written by Subba Ramaiah Kodigala and published by Academic Press. This book was released on 2011-01-03 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cu(In1-xGax)Se2 Based Thin Film Solar Cells provides valuable contents about the fabrication and characterization of chalcopyrite Cu(In1-xGax)Se2 based thin film solar cells and modules. The growth of chalcopyrite Cu(In1-xGax)(S1-ySey)2 absorbers, buffers, window layers, antireflection coatings, and finally metallic grids, which are the sole components of solar cells, is clearly illustrated. The absorber, which contains multiple elements, segregates secondary phases if the growth conditions are not well optimized i.e., the main drawback in the fabrication of solar cells. More importantly the solutions for the growth of thin films are given in detail. The properties of all the individual layers and single crystals including solar cells analyzed by different characterization techniques such as SEM, AFM, XPS, AES, TEM, XRD, optical, photoluminescence, and Raman spectroscopy are explicitly demonstrated. The electrical analyses such as conductivities, Hall mobilities, deep level transient spectroscopy measurements etc., provide a broad picture to understand thin films or single crystals and their solar cells. The book clearly explains the working principle of energy conversion from solar to electrical with basic sciences for the chalcopyrite based thin film solar cells. Also, it demonstrates important criteria on how to enhance efficiency of the solar cells and modules. The effect of environmental factors such as temperature, humidity, aging etc., on the devices is mentioned by citing several examples. - Illustrates a number of growth techniques to prepare thin film layers for solar cells - Discusses characterization techniques such as XRD, TEM, XPS, AFM, SEM, PL, CL, Optical measurements, and Electrical measurements - Includes I-V, C-V measurements illustrations - Provides analysis of solar cell efficiency - Presents current trends in thin film solar cells research and marketing

Book New Deposition Process of Cu In  Ga Se2 Thin Films for Solar Cell Applications

Download or read book New Deposition Process of Cu In Ga Se2 Thin Films for Solar Cell Applications written by Himal Khatri and published by . This book was released on 2009 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molybdenum (Mo) is currently the most common material used for Cu(In, Ga)Se2 solar cell back contacts. The first objective of this study is to utilize in-situ and ex-situ characterization techniques to investigate the growth, as well as the physical and chemical properties, of Mo thin films deposited by RF magnetron sputtering onto soda-lime glass (SLG) substrates. The effects of the deposition pressure on the nucleation and growth mechanisms that ultimately influence morphology and grain structure have been studied. Correspondence between real time spectroscopic ellipsometry (RTSE), X-ray diffraction (XRD), atomic force microscopy (AFM), and four-point probe resistivity measurements indicate that increasing deposition pressure leads to smaller average grain sizes and higher oxygen content in the Mo thin films. Changes of the material properties were also evaluated by changing RF power. It is observed that higher RF power, results in higher conductivity films. The second and overall objective of this work is to focus on the deposition and characterization of the Cu(In, Ga)Se2 absorber layer using the hybrid co-sputtering and evaporation process, which has potential for commercial PV. Solar cells were completed with a range of elemental compositions in the absorber layer, keeping a constant profile of Ga and varying Cu concentrations. The slightly Cu deficient Cu(In, Ga)Se2 films of band gap ~1.15 eV fabricated by this process consist of a single chalcopyrite phase and device efficiencies up to 12.4% were achieved for the composition ratios (x, y) = (0.30, 0.88). Correspondence between energy dispersive X-ray spectroscopy (EDS), X-ray diffraction, transmission and reflection (T & R), four-point probe resistivity, and current density-voltage (J-V) measurements indicate that increased Cu concentration leads to the incorporation of a secondary phase Cu2-xSe compound in the Cu(In, Ga)Se2 films, which is detrimental to cell performance. The third objective of this work is to evaluate the Cu2-xSe material properties by employing in-situ RTSE, as well as ex-situ SE and various other characterization techniques. SE revealed that the dielectric function spectra of Cu2-xSe evolve with temperature, providing insights into the evolution of transport properties and critical point structures. At room temperature, semi-metallic behavior of Cu2-xSe thin films was revealed by SE and Hall Effect measurements. These characteristics serve as key inputs for optical modeling of complex layer structures of Cu(In, Ga)Se2 films grown by 2- and 3-step processes.

Book Characterization of Alkaline doped Wide Bandgap Chalcopyrite Cu In Ga Se2 Thin Films and Solar Cells

Download or read book Characterization of Alkaline doped Wide Bandgap Chalcopyrite Cu In Ga Se2 Thin Films and Solar Cells written by Setareh Zahedi-Azad and published by . This book was released on 2020* with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells, Cu(In,Ga)Se2, recombination, open-circuit voltage, efficiency, simulation.

Book The Effect of Temperature  Time and Gas Flow Rate on the Growth and Characterization of Cu In  Ga Se2  CIGS  Absorbers for Thin Film Solar Cells

Download or read book The Effect of Temperature Time and Gas Flow Rate on the Growth and Characterization of Cu In Ga Se2 CIGS Absorbers for Thin Film Solar Cells written by Efrem Kebede Ejigu and published by . This book was released on 2004 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Physics of Cu In Ga Se2 Solar Cells and Their Layer Components

Download or read book Optical Physics of Cu In Ga Se2 Solar Cells and Their Layer Components written by Abedl-Rahman Ibdah and published by . This book was released on 2016 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polycrystalline Cu(In1-xGax)Se2 (CIGS) thin film technology has emerged as a promising candidate for low cost and high performance solar modules. The efficiency of CIGS solar cells is strongly influenced by several key factors. Among these factors include Ga composition and its profile in the absorber layer, copper content in this layer, and the solar cell multilayer structure. As a result, tools for the characterization of thin film CIGS solar cells and their layer components are becoming increasingly essential in research and manufacturing. Spectroscopic ellipsometry is a non-invasive technique that can serve as an accurate probe of component layer optical properties and multilayer structures, and can be applied as a diagnostic tool for real-time, in-line, and off-line monitoring and analysis in small area solar cell fabrication as well as in large area photovoltaics manufacturing. Implementation of spectroscopic ellipsometry provides unique insights into the properties of complete solar cell multilayer structures and their layer components. These insights can improve our understanding of solar cell structures, overcome challenges associated with solar cell fabrication, and assist in process monitoring and control on a production line. In this dissertation research, Cu(In,Ga)Se2 films with different Cu contents have been prepared by the one stage co-evaporation process. These films have been studied by real time spectroscopic ellipsometry (RTSE) during deposition, and by in-situ SE at the deposition temperature as well as at room temperature to extract the dielectric functions (e1, e2) of the thin film materials. Analytical expressions for the room temperature dielectric functions were developed, and the free parameters that describe these analytical functions were in turn expressed as functions of the Cu content. As a result of this parameterization, the dielectric function spectra (e1, e2) can be predicted for any desired composition within the range of the samples investigated. This capability was applied for mapping the structural and compositional variations of CIGS thin films deposited over a 10 cm × 10 cm substrate area. In another application presented in this dissertation, a non-invasive method utilizing ex-situ spectroscopic ellipsometry analysis has been developed and applied to determine non-destructively the Ga compositional profile in CIGS absorbers. The method employs parameterized dielectric function spectra (e1, e2) of CIGS versus Ga content to probe the compositional variation with depth into the absorber. In addition, a methodology for prediction of the external quantum efficiency (QE) including optical gains and losses for a CIGS solar cell has been developed. The methodology utilizes ex-situ spectroscopic ellipsometry analysis of a complete solar cell, with no free parameters, to deduce the multilayer solar cell structure non-invasively and simulate optical light absorption in each of the layer components. In the case of high efficiency CIGS solar cells, with minimal electronic losses, QE spectra are predicted from the sum of optical absorption in the active layer components. For such solar cells with ideal photo-generated charge carrier collection, the SE-predicted QE spectra are excellent representation of the measured ones. Since the QE spectra as well as the short circuit current density (Jsc) can be calculated directly from SE analysis results, then the predicted QE from SE can be compared with the experimental QE to evaluate electronic losses based on the difference between the spectra. Moreover, the calculated Jsc can be used as a key parameter for the design and optimization of anti-reflection coating structures. Because the long term production potential of CIGS solar modules may be limited by the availability of indium, it becomes important to reduce the thickness of the CIGS absorber layer. Thickness reduction would reduce the quantity of indium required for production which would in turn reduce costs. A decrease in short-circuit current density (Jsc) is expected, however, upon thinning the CIGS absorber due to incomplete absorption. To clarify the limits of obtainable Jsc in ultra-thin CIGS solar cells with Mo back contacts, optical properties and multilayer structural data are deduced via spectroscopic ellipsometry analysis and used to predict the QE spectra and maximum obtainable Jsc values upon thinning the absorber. Moreover, SE-guided optical design of ultra-thin CIGS solar cells has been demonstrated. In the case of solar cells fabricated on Mo, thinning the absorber in a CIGS solar cell is associated with significant optical losses in the Mo containing back contact layers. This is due in part to the poor optical reflectance of Mo. Such optical losses may be reduced by employing a back contact design with improved reflectance. Thus, alternative novel solar cell structures with ultra-thin absorbers and improved back contact reflectance have been designed and investigated using SE and the optical modeling methods. In addition to optical losses, electronic losses in the ultra-thin solar cells have been evaluated. By separating the absorber layer into sub-layer regions (for example, near-junction, bulk, and near-back-contact) and varying carrier collection probability in these regions, the contribution of each region to the current can be estimated. Based on this separation, the origin of the electronic losses has been identified as near the back contact.

Book Interface Modification by Ion Implantation and Optical Characterization of High efficiency Cu In Ga Se2 Solar Cells

Download or read book Interface Modification by Ion Implantation and Optical Characterization of High efficiency Cu In Ga Se2 Solar Cells written by Jakob Haarstrich and published by . This book was released on 2011 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Growth and Characterisation of Cu In  Ga Se2 Thin Films for Solar Cell Applications

Download or read book Growth and Characterisation of Cu In Ga Se2 Thin Films for Solar Cell Applications written by E. Ahmed and published by . This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Optical Properties of Thin Film Copper indium  Gallium selenide Solar Cells Using Spectroscopic Ellipsometry

Download or read book Modeling Optical Properties of Thin Film Copper indium Gallium selenide Solar Cells Using Spectroscopic Ellipsometry written by Scott H. Stephens and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this research, the optical properties of Cu(In, Ga)Se 2 thin film solar cells were modeled using variable angle spectroscopic ellipsometry and compared against established optical data from bulk materials. Mo, MoSe 2, Cu(In, Ga)Se 2 and US films were measured individually as the devices were formed layer by layer. Optical data, thickness, surface roughness, and the methodology of preparing and effectively modeling samples have been determined. Diffusion of Na from the Soda Lime glass substrate is evident in the optical constants of the Mo layer. The optical constants of the MoSe 2 layer were found to be dependent upon the deposition conditions. The bandgap of the US layer was higher when deposited on Cu(In, Ga)Se 2 surfaces than when deposited on Mo. This implies that greater lattice strain is present in the US layer of solar cell devices than that of US films previously measured in CdS/Mo structures.

Book Modeling and Simulation of Charge Carrier Recombination Dynamics in Cu In Ga Se2 Thin Film Solar Cells

Download or read book Modeling and Simulation of Charge Carrier Recombination Dynamics in Cu In Ga Se2 Thin Film Solar Cells written by José Fabio López Salas and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells with thin Cu(In,Ga)(S,Se)2 absorber films are well established in the photovoltaics market. They offer an advantage over other thin film technologies thanks to their lower content of elements with high toxicity or low earth abundance like Cd and Te. One approach to further improve the quality of production of these cells is to develop a method of material quality assessment during production that is fast, contactless and non-destructive. Time-resolved photoluminescence (TRPL) measurements offer all these characteristics. This work aims to establish the requirements to extract meaningful information about charge carrier recombination dynamics and solar cell performance parameters from TRPL measurements. To achieve this goal experiments and simulations are carried out. The material parameters are extracted from experiments and then built into the simulation model. Results from experiments also serve as the basis to verify the validity of this model. Parameter variations within the simulations function as one of the main methods in this work to gain deeper physical insight into the processes taking place during TRPL measurements. engl.

Book Development of Cu In Ga Se2 Superstrate Thin Film Solar Cells

Download or read book Development of Cu In Ga Se2 Superstrate Thin Film Solar Cells written by Franz-Josef Haug (Physiker) and published by . This book was released on 2001 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Beam Deposition and Characterization of Wide band gap Cu In  Ga se2 for Thin Film Solar Cells

Download or read book Molecular Beam Deposition and Characterization of Wide band gap Cu In Ga se2 for Thin Film Solar Cells written by Panita Chinvetkitvanich and published by . This book was released on 2006 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mo/ Cu(In, Ga)Se2/CdS/ZnO thin film solar cells were fabricated and studied on their current transport mechanism. The current-voltage characteristics were measured in the dark and illuminated, at room temperature as well as variety of temperature. The dark and illuminated I-V characteristics were deduced for their diode ideality factor (A), series resistace (R2) and the reverse saturation current density (Jo) which are related to current transport mechanism through the junction. The I-V characteristic curves at room temperature indicate that current transport process is controlled by the Shockley-Read-Hall (SRH) recombination in the space charge region. The analysis of temperature dependent current-voltage I(V, T) measurement indicates that the tunneling contributes to the recombination in the space charge region at low temperature. The studies of the effect of impurity concentration in the CdS buffer layer and the effect of illumination intensity on the I-V characteristics were analyzed and used to draw a possible energy band diagram of the device. It is also used to explain the current transport mechanism at junction.

Book Development of Cu In Ga Se2 Superstrate Thin Film Solar Cells

Download or read book Development of Cu In Ga Se2 Superstrate Thin Film Solar Cells written by Franz-Josef Haug and published by . This book was released on 2001 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhancement of the Deposition Processes of Cu In  Ga Se2 and Cds Thin Films Via In situ and Ex situ Measurements for Solar Cell Application

Download or read book Enhancement of the Deposition Processes of Cu In Ga Se2 and Cds Thin Films Via In situ and Ex situ Measurements for Solar Cell Application written by Vikash Ranjan and published by . This book was released on 2011 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin films of Cu(In, Ga)Se2 deposited by 1-stage, 2-stage and 3-stage co-evaporation processes result into the highest efficiency solar cells. Controlling the rate and sequences of individual sources during these co-evaporation processes are important for better quality Cu(In, Ga)Se2 absorber layers. At the same time, spectroscopic ellipsometry due to its ex-situ as well as in-situ application is considered as a very powerful tool to understand the material properties as well as to monitor the process. Nevertheless, spectroscopic ellipsometry was not properly utilized until now to characterize Cu(In, Ga)Se2 thin films. In this study, one of our goal is to understand the optical and electrical properties of Cu(In, Ga)Se2 as a function of process and composition. In the first part of this study, we implemented ex-situ spectroscopic ellipsometry (SE) along with other characterization techniques like Secondary ion mass spectroscopy (SIMS), Scanning electron microscopy (SEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), atomic force microscopy (AFM) etc. to compare Cu(In, Ga)Se2 thin films deposited by the above mentioned three co-evaporation processes. During this study, we were able to use SE to find the thickness, roughness, band gap, Ga grading of the Cu(In, Ga)Se2 deposited by 2-stage and 3-stage process. Finding of SE were correlated by SIMS, AES, SEM etc. In the case of Cu(In, Ga)Se2 deposited by 1-stage process, due to the high surface roughness, we are not able to implement the ex-situ spectroscopic ellipsometry. In the second and third part of this study, real time spectroscopic ellipsometry is implemented to study the material properties of Cu(In, Ga)Se2 thin films as a function of Cu and Ga concentration. Effectively, in a 3-stage co-evaporation process, the composition of the film changes during the process. To monitor and control the composition of Cu(In, Ga)Se2 during the 3-stage process by in-situ ellipsometry, it was necessary to understand the optical properties of Cu(In, Ga)Se2 as a function of Cu atomic percentage (at.%) as well as Ga at.%. Along with this, the inability to implement ex-situ SE for Cu(In, Ga)Se2 thin film motivated us to implement the spectroscopic ellipsometry in real time i.e. during the growth of the film. This in-situ real time application of SE helped us in understanding the micostructural evolution and dependence of the band gap with the Cu atomic percentage (at.%) as well as the Ga at.%. We also used this opportunity to understand the shift in the critical points as a function of temperature for CuInSe2 alloys. Characterization like AES, XRD, AFM etc were performed after the growth at room temperature to corroborate the RTSE findings. In the fourth and last part of this study, the growth of CdS on a Cu(In, Ga)Se2 surface as a function of time was studied using SE as well as AFM. We also used this opportunity to compare the growth of CdS on another substrate (SiO2). Spectroscopic ellipsometry and AFM revealed a quantum confinement effect in the case of CdS on SiO2 whereas no such effect was observed for CdS on Cu(In, Ga)Se2 surface due to the growth of compact CdS layers.

Book Development and Characterization of  Ag Cu  In Ga Se2 Thin Films Deposited by Three stage Co evaporation

Download or read book Development and Characterization of Ag Cu In Ga Se2 Thin Films Deposited by Three stage Co evaporation written by Lei Chen and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The findings in this dissertation can aid the optimization of the ACIGS deposition process, and provide reference for studies on junction formation with buffer layers and device non-uniformity etc.