EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Detonation Control for Propulsion

Download or read book Detonation Control for Propulsion written by Jiun-Ming Li and published by Springer. This book was released on 2017-12-05 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

Book Combustion Processes in Propulsion

Download or read book Combustion Processes in Propulsion written by Gabriel Roy and published by Butterworth-Heinemann. This book was released on 2006 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical propulsion comprises the science and technology of using chemical reactions of any kind to create thrust and thereby propel a vehicle or object to a desired acceleration and speed. Cumbustion Processes in Propulsion focuses on recent advances in the design of very highly efficient, low-pollution-emitting propulsion systems, as well as advances in testing, diagnostics and analysis. It offers unique coverage of Pulse Detonation Engines, which add tremendous power to jet thrust by combining high pressure with ignition of the air/fuel mixture. Readers will learn about the advances in the reduction of jet noise and toxic fuel emissions-something that is being heavily regulated by relevant government agencies. Lead editor is one of the world's foremost combustion researchers, with contributions from some of the world's leading researchers in combustion engineering Covers all major areas of chemical propulsion-from combustion measurement, analysis and simulation, to advanced control of combustion processes, to noise and emission control Includes important information on advanced technologies for reducing jet engine noise and hazardous fuel combustion emissions

Book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

Download or read book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power written by R. J. Litchford and published by . This book was released on 2001 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lateral Strain

    Book Details:
  • Author : Parkar
  • Publisher : Tredition Gmbh
  • Release : 2024-05-13
  • ISBN : 9783384226884
  • Pages : 0 pages

Download or read book Lateral Strain written by Parkar and published by Tredition Gmbh. This book was released on 2024-05-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detonation waves are self-sustained supersonic combustion waves [1]. These waves are led by a shock, which compresses the fresh reactive media to a much higher temperature and pressure for rapid reaction [1]. The tremendous reaction heat release occurring behind the shock in return energizes the propagation process. As such, this closely coupled shock-reaction complex self-sustains. Detonation waves can be sustained in a variety of energetic media including reactive gases. The large overpressures generated behind gaseous detonations make them attractive and useful for developing propulsion systems [2], such as rotating detonation engines (RDEs) [3, 4] and pulse detonation engines (PDEs) [5, 6]. These applications require reliable control of the accurate ignition and stable propagation of a detonation wave. Likewise, for safety applications [7,8], it is also desirable to have the predictability for the eventual initiation of a detonation wave and for its propagation limits when different mitigation strategies are used [9]. Therefore, realizing all these practical purposes requires predictive capability of detonation behavior. Detonations in gases usually propagate with lateral strain. For example, in confined geometries of small size, such as narrow channels or tubes, detonations are subject to significant losses induced by boundary layers, which act as a mass sink and result in flow divergence in reaction zones, thereby giving rise to lateral strain impacting the detonation propagation [10]; while in geometries of varying cross-section areas or curved channels, as typically seen in PDE pre-detonator tubes and RDE combustors, detonations are curved with the flow also diverging after passing the leading front [11-13]. These lateral strain rates are generally known to decrease the detonation speed and its propagation limit [10, 11, 13-17]. Thus, in order to achieve the practical purposes of either utilizing or avoiding detonations, the effect of such lateral strain rat

Book Development of a Gas Fed Pulse Detonation Research Engine

Download or read book Development of a Gas Fed Pulse Detonation Research Engine written by R. J. Litchford and published by . This book was released on 2001 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Application of Detonation to Propulsion

Download or read book Application of Detonation to Propulsion written by International Colloquium on Application of Detonation for Propulsion and published by . This book was released on 2004 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Detonation Concepts for Propulsion and Power Generation

Download or read book New Detonation Concepts for Propulsion and Power Generation written by Eric M. Braun and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal e ciency prediction of a detonation wave based on the work and heat speci ed by process path diagrams and a control volume analysis. A combined rst and second law analysis aids in understanding performance trends for di erent initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the ow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an ori ce connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed uidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected, the ori ce diameter, and the plenum cavity pressure. Results indicate that the detonation wave pressure temporarily interrupts the uidic valve supply, but the wave products can be quickly expelled by the fresh fuel supply to allow for refueling. The interruption time of the valve scales with injection and detonation wave pressure ratios as well as a characteristic time. The feasibility of using a detonation wave as a source for producing power in conjunction with a linear generator is considered. Such a facility can be constructed by placing a piston{spring system at the end of a pulsed detonation engine (PDE). Once the detonation wave re ects o the piston, oscillations of the system drive the linear generator. An experimental facility was developed to explore the interaction of a gaseous detonation wave with the piston. Experimental results were then used to develop a model for the interaction. Governing equations for two engine designs are developed and trends are established to indicate a feasible design space for future development.

Book Engine Detonation Control Device

Download or read book Engine Detonation Control Device written by Ronald Mamoru Ishii and published by . This book was released on 1985 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Detonation and Two Phase Flow

Download or read book Detonation and Two Phase Flow written by S Penner and published by Elsevier. This book was released on 2012-12-02 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in Astronautics and Rocketry, Volume 6: Detonation and Two-Phase Flow compiles technical papers presented at the ARS Propellants, Combustion, and Liquid Rockets Conference held in Palm Beach, Florida on April 26-28, 1961. This book provides an excellent illustration of research and development on a selected group of problems relating to detonations, two-phase nozzle flow, and combustion in liquid fuel rocket engines. This volume is divided into two parts. Part 1 covers the entire range of physical conditions under which detonation may be initiated or sustained, such as high explosives, solid propellants, liquid sprays, and gases. Experimental and theoretical studies are also discussed, including the significant progress of the basic phenomena involved in transition from deflagration to detonation, and nature of stable detonations in dilute sprays and other systems. The perennial problems associated with high frequency instabilities in liquid fuel rocket engines are considered in Part 2. This publication is valuable to students and investigators working in the field of propulsion research and development.

Book Gaseous Detonation Physics and Its Universal Framework Theory

Download or read book Gaseous Detonation Physics and Its Universal Framework Theory written by Zonglin Jiang and published by Springer Nature. This book was released on 2022-12-16 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the theories and research progress in gaseous detonation research, and proposes a universal framework theory that overcomes the current research limitations. Gaseous detonation is an extremely fast type of combustion that propagates at supersonic speed in premixed combustible gas. Being self-sustaining and self-organizing with the unique nature of pressure gaining, gaseous detonation and its gas dynamics has been an interdisciplinary frontier for decades. The research of detonation enjoyed its early success from the development of the CJ theory and ZND modeling, but phenomenon is far from being understood quantitatively, and the development of theories to predict the three-dimensional cellular structure remains a formidable task, being essentially a problem in high-speed compressible reacting flow. This theory proposed by the authors’ research group breaks down the limitation of the one-dimensional steady flow hypothesis of the early theories, successfully correlating the propagation and initiation processes of gaseous detonation, and realizing the unified expression of the three-dimensional structure of cell detonation. The book and the proposed open framework is of high value for researchers in conventional applications such as coal mine explosions and chemical plant accidents, and state-of-the-art research fields such as supernova explosion, new aerospace propulsion engines, and detonation-driven hypersonic testing facilities. It is also a driving force for future research of detonation.

Book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

Download or read book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction exer

Book Recent Developments in Approaches to Pulsed Detonation Propulsion

Download or read book Recent Developments in Approaches to Pulsed Detonation Propulsion written by A. J. Dean and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Combustion Processes in Propulsion

Download or read book Combustion Processes in Propulsion written by Gabriel Roy and published by Butterworth-Heinemann. This book was released on 2005-10 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical propulsion comprises the science and technology of using chemical reactions of any kind to create thrust and thereby propel a vehicle or object to a desired acceleration and speed. This book focuses on recent advances in the design of very highly efficient, low-pollution-emitting propulsion systems, as well as advances in testing, diagnostics and analysis. It offers unique coverage of Pulse Detonation Engines, which add tremendous power to jet thrust by combining high pressure with ignition of the air/fuel mixture. Readers will learn about the advances in the reduction of jet noise and toxic fuel emissions-something that is being heavily regulated by relevant government agencies. * Lead editor is one of the world's foremost combustion researchers, with contributions from some of the world's leading researchers in combustion engineering * Covers all major areas of chemical propulsion-from combustion measurement, analysis and simulation, to advanced control of combustion processes, to noise and emission control * Includes important information on advanced technologies for reducing jet engine noise and hazardous fuel combustion emissions

Book Pulse Detonation Engine

Download or read book Pulse Detonation Engine written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2021-10-14 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Pulse Detonation Engine A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave and the next. Theoretically, a PDE can operate from subsonic up to a hypersonic flight speed of roughly Mach 5. An ideal PDE design can have a thermodynamic efficiency higher than other designs like turbojets and turbofans because a detonation wave rapidly compresses the mixture and adds heat at constant volume. Consequently, moving parts like compressor spools are not necessarily required in the engine, which could significantly reduce overall weight and cost. PDEs have been considered for propulsion since 1940. Key issues for further development include fast and efficient mixing of the fuel and oxidizer, the prevention of autoignition, and integration with an inlet and nozzle. To date, no practical PDE has been put into production, but several testbed engines have been built and one was successfully integrated into a low-speed demonstration aircraft that flew in sustained PDE powered flight in 2008. In June 2008, the Defense Advanced Research Projects Agency (DARPA) unveiled Blackswift, which was intended to use this technology to reach speeds of up to Mach 6 How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Pulse Detonation Engine Chapter 2: Nuclear Pulse Propulsion Chapter 3: Rotating Detonation Engine Chapter 4: AIMStar Chapter 5: Antimatter-catalyzed nuclear pulse propulsion Chapter 6: Antimatter rocket Chapter 7: Nuclear electric rocket Chapter 8: Nuclear power in space Chapter 9: Nuclear propulsion Chapter 10: Nuclear thermal rocket Chapter 11: Project Pluto Chapter 12: Fission-fragment rocket (II) Answering the public top questions about pulse detonation engine. (III) Real world examples for the usage of pulse detonation engine in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technology in each industry to have 360-degree full understanding of pulse detonation engine' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of pulse detonation engine.

Book Towards Integrated Pulse Detonation Propulsion and MHD Power

Download or read book Towards Integrated Pulse Detonation Propulsion and MHD Power written by Ron J. Litchford and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Pulse Detonation Propulsion Proof of Concept Test Article Development

Download or read book Pulse Detonation Propulsion Proof of Concept Test Article Development written by T. R. A. Bussing and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Deflagration to detonation Control by Non equilibrium Gas Discharges and Its Applications for Pulsed Detonation Engine

Download or read book Deflagration to detonation Control by Non equilibrium Gas Discharges and Its Applications for Pulsed Detonation Engine written by A. Yu Starikovskii and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: