EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Composition Analysis of Ultrahigh Energy Cosmic Rays Using the Pierre Auger Observatory Surface Detector

Download or read book Composition Analysis of Ultrahigh Energy Cosmic Rays Using the Pierre Auger Observatory Surface Detector written by David Scott Barnhill and published by . This book was released on 2006 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: The origin and composition of ultrahigh energy cosmic rays has been and continues to be a topic of much study and debate. The Pierre Auger Observatory was designed to investigate the highest energy cosmic rays and resolve some of these problems. In this dissertation, I present a description of the Pierre Auger Observatory and a study of the performance of the surface array as well as work done on the photomultiplier tubes used in the surface array. I also present an analysis done on the composition of the events detected in the surface detector paying special attention to a photon primary assumption. Monte carlo simulations of extensive air showers are put through a simulation of the surface detector and observables are compared to real data. The mean behavior of the real data is compared to various baryonic primary assumptions. For photon primaries, a method is described to set an upper limit on the flux of photons based on comparing real events to expected distributions for photon initiated air showers. An upper limit on the photon flux is presented and compared with predictions from various exotic models of cosmic ray origins.

Book Ultra High Energy Cosmic Ray Composition

Download or read book Ultra High Energy Cosmic Ray Composition written by Nathaniel Peter Longley and published by . This book was released on 1993 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design  Calibration  and Early Results of a Surface Array for Detection of Ultrahigh Energy Cosmic Rays

Download or read book Design Calibration and Early Results of a Surface Array for Detection of Ultrahigh Energy Cosmic Rays written by Patrick S. Allison and published by . This book was released on 2007 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: The difficulties in understanding cosmic rays at ultrahigh energies have been a persistent problem in particle astrophysics for almost 50 years, due to insufficient statistics and large systematic errors. The design of a surface array for the Pierre Auger Observatory, which was intended to resolve these problems, will be discussed, along with its calibration. The surface detector is an array of 1600 water Cherenkov detectors, spaced 1.5 km apart for a total area of 3000 km2, planned to operate continuously for 20 years. The detectors therefore must be inexpensive, low power, easy to deploy, and have a high reliability. Each surface detector station is required to make a high precision measurement of the signal density produced by the air showers induced by cosmic rays over a wide dynamic range, and therefore a calibration system was developed for the array which creates a signal response uniform to within 3%. Finally, early results of the cosmic ray energy spectrum will be calculated, along with the future implications of the array for the field of cosmic ray astrophysics as well as physics in general.

Book Measurement of the Energy Spectrum of Cosmic Rays Above 3 X 1017 EV Using the Infill Array of the Pierre Auger Observatory

Download or read book Measurement of the Energy Spectrum of Cosmic Rays Above 3 X 1017 EV Using the Infill Array of the Pierre Auger Observatory written by Rivera Bretel Hugo Marcelo and published by . This book was released on 2013 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Pierre Auger Observatory, in Argentina, combines a 3000 $\mathrm{km^2}$ surface array of water Cherenkov detectors with fluorescence telescopes to measure extensive air showers initiated by ultra-high energy cosmic rays. This "hybrid" observatory (in operation since 2004, and completed in 2008) is fully efficient for cosmic rays energies above $10^{18}$ eV, that is, from just below the "ankle" of the energy spectrum up to the highest energies.After the completion of the main observatory, the Auger collaboration has started to deploy new instruments to extend the energy range down to about 0.1 EeV. The planned extensions include two infill surface arrays with 750 and 433 m spacing, with muon detection capabilities, and three additional fluorescence telescopes with a more elevated field of view. The 750 m infill array (covering about 24 $\mathrm{km^2}$) and the new telescopes are now operational. Their aim is the measurement of cosmic rays from below the second knee of the spectrum up to the ankle, where data from the extensions overlap those from the main observatory. The study of the evolutior of the spectrum through the second knee and the ankle, together with the primary mass composition, are crucial to the understanding of the transition from a galactic cosmic ray origin to an extragalactic one.This thesis makes use of data from the 750 m infill array: the objective is the measurement of the cosmic ray energy spectrum in the energy region above $3 \times 10^{17}$ eV, where the array is fully efficient. To get to the energy spectrum, several steps are needed, from the reconstruction of events, through the precise determination of the exposure of the array, up to the determination of the primary energy. The thesis deals with these aspects, before reaching the final result.The first chapter gives a general introduction to cosmic ray physics and detectors. It also summarizes experimental results above the first knee of the spectrum with particular emphasis on those obtained above $10^{17}$ eV. The next two chapters describe the Pierre Auger Observatory and the infill array, respectively. In chapter 2, the main Auger results are summarized too, after a schematic description of th different components of the observatory. Chapter 3 sets the stage for the following chapters. It presents a more detailed description of the characteristics of the infill array, in particular the trigger definitions, event selection and reconstruction. In chapter 4 the performance of the reconstruction of the lateral distribution of observed showers is studied in detail. This is particularly important for the energy spectrum, since the signal at a fixed distance from the shower axis is used as the energy estimator of the event. This signal is estimated by means c the measured lateral distribution of the shower. Chapter 5 presents a comparison between the event reconstruction of the infill and main arrays. Using the set of showers detected by both instruments, the derived geometry and energy estimation are compared, showing a good agreement. In chapter 6, the energy threshold of the array, and hence the set of events to be used, is defined. The methods to obtain the exposure of the array are discussed, as well as related systematic uncertainties. Finally, in chapter 7, the technique to derive the primary energy for each detected shower is presented. The derived energy spectrum is discussed, and the flux is shown to be consistent with that measured by other instruments in the overlapping energy regions.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Instruments and Methods for the Radio Detection of High Energy Cosmic Rays

Download or read book Instruments and Methods for the Radio Detection of High Energy Cosmic Rays written by Frank Schröder and published by Springer Science & Business Media. This book was released on 2012-12-14 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cosmic rays consist of elementary particles with enormous energy which originate from outside our solar system and constantly hit the Earth’s atmosphere. Where do these cosmic rays originate? How does nature accelerate the cosmic-ray particles to energies with orders of magnitude beyond the limits of manmade particle accelerators? What can we learn by measuring the interactions of the cosmic rays with the atmosphere? Digital radio-antenna arrays offer a promising, complementary measurement method for high-energy cosmic rays. This thesis reports on substantial advances in the development of the radio technique, which will be used to address these questions in future experiments.

Book Measuring the Composition of Cosmic Rays with the SPASE and AMANDA Detectors

Download or read book Measuring the Composition of Cosmic Rays with the SPASE and AMANDA Detectors written by Kathrine Rawlins and published by . This book was released on 2001 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Spectrum Measured by the Telescope Array Surface Detector

Download or read book Energy Spectrum Measured by the Telescope Array Surface Detector written by Dmitri Ivanov and published by . This book was released on 2012 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two conflicting measurements of the ultra high energy cosmic ray (UHECR) flux have been reported by the Akeno Giant Air Shower Array (AGASA) and the High Resolution Fly's Eye (HiRes) experiments. HiRes observes a $sim$5$sigma$ suppression at $E=10^{19.75}$ eV, which is in agreement with the prediction of Greisen-Zatsepin-Kuz'min (GZK) theory. AGASA, in contrast, sees the flux extended well beyond $E=10^{20}$ eV with no visible break, suggesting that the flux is limited only by the rate at which the sources can produce the UHECR and not by interaction of energetic particles with the cosmic microwave background, thus challenging the relativistic invariance principle. In response to this discrepancy, a new experiment named the Telescope Array (TA) has been deployed, which combines the detection elements used separately by HiRes and AGASA. We describe the TA surface detector (SD) analysis using a technique new to the field, which consists of a detailed Monte-Carlo (MC) simulation of the SD response to the natural cosmic rays, validating the MC by comparing its distributions with the data, and calculation of the SD aperture from the MC. We will also describe our reconstruction procedure, based solely upon the data, and its application to both data and the MC. Finally, we will describe the energy spectrum resulting from this analysis, which is found to be in excellent agreement with the HiRes result, and as such, is the first confirmation of the GZK effect by a ground array of scintillation counters.

Book Mass Composition Studies of Ultra High Energy Cosmic Rays Through the Measurement of the Muon Production Depths at the Pierre Auger Observatory

Download or read book Mass Composition Studies of Ultra High Energy Cosmic Rays Through the Measurement of the Muon Production Depths at the Pierre Auger Observatory written by Laura Collica and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Pierre Auger Observatory studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of UHECRs is very low (less than 1 particle/km2-year) and their properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHECRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highe-st energies is of fundamental importance for particle physics and astrophysics. Indeed, it allows to explore the hadronic interactions at ultra-high energies, and to discriminate between different scenarios of origin and propagation of cosmic rays.

Book Handbook of Particle Detection and Imaging

Download or read book Handbook of Particle Detection and Imaging written by Claus Grupen and published by Springer Science & Business Media. This book was released on 2012-01-08 with total page 1251 pages. Available in PDF, EPUB and Kindle. Book excerpt: The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.

Book Measurement of the Cosmic Ray Flux Above 100 PeV at the Pierre Auger Observatory

Download or read book Measurement of the Cosmic Ray Flux Above 100 PeV at the Pierre Auger Observatory written by Alan Coleman and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Cosmic rays are particles and nuclei that arrive at Earth and act as messengers, informing us of the nature of celestial objects and events throughout the universe. Some of the highest energy events, with over a Joule of energy, are more energetic than what can be made on Earth in modern particle accelerators. In the ultra-highenergy range > 100 PeV, the arrival rate is low enough (1 per km 2 per year, or less) that there are still many outstanding questions concerning their origin and what types of particles they are. Further, their rarity presents an experimental challenge as direct detection of cosmic rays above this energy would require decades to centuries of data collection. Instead, the particles cascades created by ultra-high energy cosmic rays interacting with air molecules high in the atmosphere, called air showers, can be detected using observatories that cover 10-1000 km^2 . The Pierre Auger Observatory includes a number of methods to detect air showers and covers over 3000 km^2 in the Mendoza Province of Argentina. The Observatory includes a hybrid design by which air showers can be detected by fluorescence detectors while they are developing in the air as well as by an array of surface detectors on the ground. This thesis includes an extensive update to the reconstruction methods used to estimate the trajectory and energy of a cosmic ray using a hexagonal array of water Cherenkov detectors with 750 m spacing. The update was motivated by the inclusion of a new set of particle triggers that were installed in the local stationsthat make up the array. These triggers were designed to be insensitive to muons which make up the primary background for individual stations. Thus, they increase the sensitivity of the array to lower energy parts of air showers and lower energy showers in general.A major component of this work was the characterization of the arrays abilities to detect and sample air showers with the new trigger algorithms. On the level of individual stations, the triggering efficiency and distribution of signals was studied. On the array-level, the efficiency with which the 750 m array detects showers was also calculated for two sets of cosmic ray masses using a dedicated set of air shower simulations based on hadronic interaction models.The second component of this thesis was an improvement of Augers model of air shower development. Due to a lack of understanding of hadronic cross sections in the ultra-high energy regime, empirical models are used to characterize the temporal and spatial distribution of particles within the cascade. The distributionof signal as a function of distance from an air showers central axis was updated, benefiting from the 30% more sampling of the shower front by new-triggered stations. This model is particularly important as it is used to find the expected signal at a fixed reference distance from the axis to estimate the showers size, a quantity highly correlated to energy. These size estimations were then corrected for a number of systematic biases to produce a more precise energy estimator. Finally, the energy estimators were cross-calibrated with the nearly calorimetric energy measurements made by the fluorescence detectors. This allowed for the surface detector to directly estimate energies accurate to within E/E = 14-15%.Motivated by the parameter space where the array can detect showers with full efficiency, two semi-joint data sets were chosen which included energies and zenith angles (E > 10^17 eV, 40 ) and (E 10^17.3 eV,

Book Introduction to Ultrahigh Energy Cosmic Ray Physics

Download or read book Introduction to Ultrahigh Energy Cosmic Ray Physics written by Pierre Sokolsky and published by Frontiers in Physics. This book was released on 2020-10-27 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition provides an up-to-date summary of the field of ultra-high energy cosmic rays, dealing with their origin, propagation, and composition, . The authors reflect the enormous strides made since the first edition in the realm of experimental work, in particular the use of vastly improved, more sensitive and precise detectors. The level remains introductory and pedagogical, suitable for students and researchers interested in moving into this exciting field. Throughout the text, the authors focus on giving an introductory overview of the key physics issues, followed by a clear and concise description of experimental approaches and current results. Key Features: Updates the most coherent summary of the field available, with new text that provides the reader with clear historical context. Brand new discussion of contemporary space-based experiments and ideas for extending ground-based detectors. Completely new discussion of radio detection methods. Includes a new chapter on small to intermediate-scale anisotropy. Offers new sections on modern hadronic models and software packages to simulate showers.

Book Upper Limits on the Ultra high Energy Cosmic Ray Flux from Unresolved Sources

Download or read book Upper Limits on the Ultra high Energy Cosmic Ray Flux from Unresolved Sources written by Ross E. Burton and published by . This book was released on 2012 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Pierre Auger Observatory is the world's largest ultra-high energy cosmic ray detector. Its goals include answering basic questions about the origins and composition of cosmic rays at the highest energies. We outline the scientific motivation for constructing such an observatory and we highlight some of the significant results produced so far by this world-class instrument. We present the results of our own contributions toward calibrating the timing characteristics of the instrument followed by two alternative techniques for analyzing cosmic ray arrival direction data. The first technique is based on a Bayesian statistical framework and is presented as a solution to some of the difficulties in applying a standard analysis to identify anisotropy in the cosmic ray flux. The second analysis we present is based on a Markov Chain Monte Carlo method for identifying sources of cosmic rays in our arrival direction data. We are able to use our method to set an upper limit of 0.15 per square km per year on the flux from any potential sources producing ultra-high energy cosmic rays with energy E{u2265}3 EeV. We conclude with a proposal for enhancing the already successful observatory with an array of non-imaging Cherenkov detectors. According to our simulation work, such an array could serve as both an independent measure of the cosmic ray energy and, if the array is dense enough, it could also provide insight into the composition of ultra-high energy cosmic rays on an event by event basis.

Book Evidence for a Mixed Mass Composition at the  ankle  in the Cosmic ray Spectrum

Download or read book Evidence for a Mixed Mass Composition at the ankle in the Cosmic ray Spectrum written by and published by . This book was released on 2016 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at $\lg(E/{\rm eV})=18.5-19.0$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A> 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.

Book Microwave Detection of Cosmic Rays and Multi messenger Analysis of the Parameters of Ultra high Energy Astrophysical Sources

Download or read book Microwave Detection of Cosmic Rays and Multi messenger Analysis of the Parameters of Ultra high Energy Astrophysical Sources written by Nathan E. Griffith and published by . This book was released on 2015 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of ultra-high energy (UHE) cosmic particles is frequently characterized by its low statistics, and a central problem of the field is to find novel ways to navigate this challenge. The research presented in this dissertation attempts to address this problem in two ways: first, by investigating microwave radiation as a new method of UHE cosmic ray detection, and second, by using a multi-messenger (proton and neutrino) analysis to determine what current and next generation UHE neutrino detectors may be able to reveal about UHE astrophysical sources. The cosmic ray detector (called AMBER) is primarily a joint collaboration between Ohio State and the University of Hawaii. In May/June 2011 the AMBER experiment was installed at the Pierre Auger Observatory in Malargue, Argentina, and began taking data in coincidence with the observatory's surface detector array. This work presents a description of the experiment, a calibration based on an astrophysical radio source (the Milky Way galaxy), and an analysis of data. The second half of this document describes a multi-messenger analysis performed with co-authors Amy Connolly and Shunsaku Horiuchi on a publication in preparation. Fits to Pierre Auger 2013 data are used in conjunction with a spectral model and simulations of UHE neutrino detectors to explore the UHE source parameters of cosmic evolution and source spectrum cutoff. Constraints provided using the effective areas of the ANITA 3, ARA, and EVA detectors are considered.