EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Evaluation of Solid Dispersion of Water Insoluble Drug

Download or read book Design and Evaluation of Solid Dispersion of Water Insoluble Drug written by Vachaspati Dubey and published by . This book was released on 2016-01-22 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Formulating Poorly Water Soluble Drugs

Download or read book Formulating Poorly Water Soluble Drugs written by Robert O. Williams III and published by Springer Science & Business Media. This book was released on 2011-12-04 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is intended to provide the reader with a breadth of understanding regarding the many challenges faced with the formulation of poorly water-soluble drugs as well as in-depth knowledge in the critical areas of development with these compounds. Further, this book is designed to provide practical guidance for overcoming formulation challenges toward the end goal of improving drug therapies with poorly water-soluble drugs. Enhancing solubility via formulation intervention is a unique opportunity in which formulation scientists can enable drug therapies by creating viable medicines from seemingly undeliverable molecules. With the ever increasing number of poorly water-soluble compounds entering development, the role of the formulation scientist is growing in importance. Also, knowledge of the advanced analytical, formulation, and process technologies as well as specific regulatory considerations related to the formulation of these compounds is increasing in value. Ideally, this book will serve as a useful tool in the education of current and future generations of scientists, and in this context contribute toward providing patients with new and better medicines.

Book Solubility enhancement of poorly water soluble drugs by solid dispersion

Download or read book Solubility enhancement of poorly water soluble drugs by solid dispersion written by Adela Kalivoda and published by Cuvillier Verlag. This book was released on 2012-06-25 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Solid dispersions are a promising approach for controlled release drug delivery systems as both the bioavailability enhancement of poorly water-soluble drugs as well as the sustained release of water-soluble drugs are possible to optimize their in vivo performance. Different methods for the manufacture of solid dispersion systems have been introduced in literature. In the present work, two methods are compared: hot-melt extrusion and ultrasound-assisted compaction technique. Various carrier systems and drugs with different physicochemical properties are applied to investigate the feasibility of the technologies for pharmaceutical formulation. The formulations are compared to the corresponding untreated physical blends of the components regarding their solid state structure and dissolution behavior to assess the effect of the manufacturing technique. Ultrasound-assisted compaction technique improves the initial dissolution rate of fenofibrate, a poorly water-soluble model drug. The crystalline API is partially converted into its amorphous state. As equivalent results can be achieved if the polymers are added directly to the dissolution medium, the dissolution enhancement is attributed to an improved wettability of the drug. A statistical design of experiments is employed to investigate the effect of the process parameters on the results. Difficulties are encountered in the determination of process parameters which result in an optimal outcome. The process is very sensitive to the smallest changes of settings, for example of the position of the sonotrode. Additionally, the delivery of ultrasound energy is inhomogeneous. There is no or only insufficient user control of these parameters available. Furthermore, the duration of ultrasound energy delivery which is identified as a crucial parameter cannot be set by the user. The variable factors ultrasound energy, pressure of the lower piston and pressure of the upper piston affect the defined responses in the opposite direction. Hence, there are no settings which result in a satisfactory outcome. A strong influence of the material characteristics on the process is observed leading to a batch to batch variability. Due to an insufficient reproducibility of results, the application of the technology cannot be recommended in its current state in the pharmaceutical formulation development and/or production. Improvements in homogeneity of energy delivery, process monitoring, user control and amount of leakage are mandatory for an acceptable performance and a future application in the pharmaceutical sector. The polymers COP, HPMC and PVCL-PVAc-PEG are well suitable as carriers for hot-melt extruded formulations of fenofibrate. All three extrudates are amorphous one-phase systems with the drug molecularly dispersed in the polymer. The enhancement of the initial dissolution rate and the maximum concentration level achieved are dependent on the applied carrier system. Supersaturation levels of up to 12.1 times are reached which are not stable due to recrystallization processes. The application of blends of polymers as carriers reduces the decrease rate after cmax. Because of water absorption and polymer relaxation, the overall dissolution performance decreases with increasing storage times which can be avoided through an optimization of the packaging. If oxeglitazar is used as API, the initial dissolution rate of the extrudates is below that of the untreated drug, with the exception of the ternary blend of COP, HPMC and oxeglitazar which shows a substance-specific super-additive effect. In contrast to the other extrudates, the formulation of PVCL-PVAc-PEG and oxeglitazar does not form a molecularly dispersed solid solution of the drug in the carrier. Instead, an amorphous two-phase system is present. No changes are observed after storage, presumably due to higher glass transition temperatures of the hot-melt extruded systems which are considerably above those of the corresponding fenofibrate extrudates. With felodipine as API, the dissolution profile is enhanced with COP as single carrier. If HPMC or PVCL-PVAc-PEG is used as single or additional polymeric carriers, the dissolution is equivalent (HPMC) or lower (PVCL-PVAc-PEG) than that of the pure drug although molecularly disperse systems are present in all cases. Out of the two investigated methods only hot-melt extrusion is a suitable technology to manufacture solid dispersions with an improved dissolution behavior. The dissolution profile of the extrudates can be influenced by adding polymers with differing physicochemical characteristics. Predictions on the dissolution behavior of the extrudates with polymeric blends as carriers can be made if there is knowledge on the dissolution profiles of the corresponding single polymeric extrudates. Due to substance-specific effects, the results are not transferable from drug to drug. Even so, the data are promising as the release behavior of the manufactured extrudates can be easily modified and readily adapted to one's needs. Further research will have to be conducted to verify the concept and the relevance of the results in vivo. Zusammenfassung Feste Dispersionen sind ein vielversprechender Ansatz zur Herstellung von Drug Delivery-Systemen mit kontrollierter Wirkstofffreisetzung, da sie sowohl die Bioverfügbarkeit schlecht wasserlöslicher Arzneistoffe verbessern als auch die Freisetzung gut wasserlöslicher Arzneistoffe verzögern können und so deren in vivo Verhalten optimieren. Verschiedene Herstellungsmethoden wurden in der Literatur vorgestellt. In der vorliegenden Arbeit werden zwei Technologien miteinander verglichen: Schmelzextrusion und Ultraschall gestützte Verpressung (USAC). Verschiedene Trägersysteme und Arzneistoffe mit unterschiedlichen physikochemischen Eigenschaften werden untersucht, um die Einsatzmöglichkeit im pharmazeutischen Bereich zu überprüfen. Die Struktur der hergestellten Systeme und deren Freisetzungsverhalten werden mit den physikalischen Mischungen der Komponenten verglichen, um den Einfluss der Formulierung zu bestimmen. Durch USAC wird die initiale Freisetzungsrate von Fenofibrat, einem schlecht wasserlöslichen Modellarzneistoff, verbessert. Eine teilweise Umwandlung vom kristallinen in den amorphen Zustand tritt auf. Vergleichbare Ergebnisse werden bei einer Polymerzugabe zum Freisetzungsmedium erreicht; daher wird davon ausgegangen, dass vor allem eine verbesserte Benetzbarkeit des Arzneistoffs eine Rolle spielt. Mittels statistischer Versuchsplanung wird der Einfluss der verschiedenen Prozessparameter untersucht. Die Einstellung der Prozessparameter, um ein optimales Ergebnis zu erhalten, gestaltet sich schwierig. Der Prozess reagiert auf kleinste Veränderungen, zum Beispiel der Position der Sonotrode, überaus sensitiv. Außerdem wird die Ultraschallenergie nicht homogen übertragen. Die Kontrolle dieser Parameter durch den Anwender ist nicht oder nur unzureichend möglich. Ebenso kann die Dauer der Ultraschallapplizierung, die essentiell für den Prozess ist, nicht eingestellt werden. Die Prozessparameter Ultraschallenergie, Unterstempeldruck und Sonotrodendruck beeinflussen die Zielgrößen in entgegengesetzter Richtung. Daher gibt es keine Einstellung, die für alle Zielgrößen optimale Ergebnisse liefert. Zusätzlich ist der Prozess stark abhängig von den Eigenschaften des verwendeten Materials: Die Verwendung unterschiedlicher Polymerchargen macht eine Anpassung der Prozessparameter notwendig, um vergleichbare Ergebnisse zu erhalten. Eine ausreichende Reproduzierbarkeit der Ergebnisse für einen Einsatz dieser Technologie in Formulierungsentwicklung oder Produktion ist nicht gegeben. Eine homogene Ultraschallenergiezufuhr sowie Verbesserungen der Prozessüberwachung, der Benutzerkontrolle und eine Verminderung der austretenden Materialmenge sind für eine akzeptable Leistung und eine zukünftige Anwendung im pharmazeutischen Bereich zwingend erforderlich. Die Polymere COP, HPMC, PVCL-PVAc-PEG sind für eine Freisetzungsverbesserung von Fenofibrat mittels Schmelzextrusion geeignet. Es liegen einphasige, molekulardisperse feste Lösungen vor. Abhängig von der Trägersubstanz wird die initiale Freisetzungsrate unterschiedlich stark erhöht, ebenso die maximale Konzentration des Arzneistoffes in Lösung. Eine bis zu 12.1-fache Übersättigung wird erreicht, die aufgrund von Rekristallisationsprozessen nicht stabil ist. Der Einsatz von polymeren Mischungen reduziert die Geschwindigkeit des Konzentrationsabfalls. Die Absorption von Wasser und Relaxationseffekte vermindern die Freisetzungserhöhung mit zunehmender Lagerdauer; dieser Entwicklung kann durch eine Optimierung des Packmittels entgegengewirkt werden. Wird der ebenfalls schwer wasserlösliche Arzneistoff Oxeglitazar verwendet, so ist die initiale Freisetzungsrate der Extrudate der des reinen Arzneistoffs unterlegen, mit Ausnahme der ternären Mischung von COP, HPMC und Oxeglitazar, die einen substanzspezifischen überadditiven Effekt aufweist. PVCL-PVAc-PEG-Oxeglitazar-Extrudate bilden im Gegensatz zu den übrigen Formulierungen keine molekulardisperse feste Lösung, sondern ein amorphes Zwei-Phasen-System. Eine Veränderung während der Lagerzeit wird nicht beobachtet, vermutlich aufgrund der höheren Glasübergangstemperaturen dieser Systeme. Lediglich das Freisetzungsprofil von COP-Felodipin-Extrudaten ist verbessert. Gegenüber dem reinen Arzneistoff ist die Freisetzung der übrigen Extrudate vergleichbar (HPMC) oder verringert (PVCL-PVAc-PEG), obwohl auch hier molekulardisperse Systeme vorliegen. Von den beiden untersuchten Technologien ist lediglich die Schmelzextrusion geeignet, um feste Dispersionen mit einem verbesserten Freisetzungsverhalten herzustellen. Das Freisetzungsprofil der Extrudate kann durch den Zusatz von Polymeren mit unterschiedlichen Eigenschaften optimiert und vorhergesagt werden, wenn das Freisetzungsprofil der Einzelpolymer-Extrudate bekannt ist. Die Ergebnisse sind aufgrund von substanzspezifischen Effekten nicht von Arzneistoff auf Arzneistoff übertragbar. Nichtsdestotrotz sind die Erkenntnisse dieser Arbeit vielversprechend, da gezeigt wird, dass das Freisetzungsprofil der Extrudate leicht beeinflusst und an spezifische Anforderungen angepasst werden kann. Weitere Untersuchungen sind notwendig, um das Konzept und die Relevanz der Ergebnisse in vivo zu überprüfen.

Book Amorphous Solid Dispersions

Download or read book Amorphous Solid Dispersions written by Navnit Shah and published by Springer. This book was released on 2014-11-21 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a comprehensive guide on the theory and practice of amorphous solid dispersions (ASD) for handling challenges associated with poorly soluble drugs. In twenty-three inclusive chapters, the book examines thermodynamics and kinetics of the amorphous state and amorphous solid dispersions, ASD technologies, excipients for stabilizing amorphous solid dispersions such as polymers, and ASD manufacturing technologies, including spray drying, hot melt extrusion, fluid bed layering and solvent-controlled micro-precipitation technology (MBP). Each technology is illustrated by specific case studies. In addition, dedicated sections cover analytical tools and technologies for characterization of amorphous solid dispersions, the prediction of long-term stability, and the development of suitable dissolution methods and regulatory aspects. The book also highlights future technologies on the horizon, such as supercritical fluid processing, mesoporous silica, KinetiSol®, and the use of non-salt-forming organic acids and amino acids for the stabilization of amorphous systems. Amorphous Solid Dispersions: Theory and Practice is a valuable reference to pharmaceutical scientists interested in developing bioavailable and therapeutically effective formulations of poorly soluble molecules in order to advance these technologies and develop better medicines for the future.

Book Enhancing Delivery of Poorly Water soluble Drugs by Innovative Amorphous Solid Dispersions

Download or read book Enhancing Delivery of Poorly Water soluble Drugs by Innovative Amorphous Solid Dispersions written by Scott Victor Jermain and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Poorly water-soluble drugs continue to dominate today’s drug development pipelines, and thus a multitude of technologies and solubility-enhancing methodologies have been commercialized to address this issue. One-such methodology to enhance the solubility of poorly water-soluble drugs is the development of amorphous solid dispersions. What was once considered a risky method of drug delivery (due to lack of drug kinetic stability in its amorphous state), formulating drugs as amorphous solid dispersions has grown significantly over the past two decades. Two amorphous solid dispersion-producing technologies have become well-understood for the development and successful delivery of poorly water-soluble drugs, and thus an overwhelming majority of commercialized amorphous solid dispersion products are processed by these two technologies; hot melt extrusion and spray drying. Each technology has distinct advantages and disadvantages, and thus many poorly water-soluble drugs are unable to process by either technology using conventional techniques. Thus, novel utilization of excipients and processing methods is necessary to continually expand the formulation design space. Furthermore, the development and commercialization of novel amorphous solid dispersion-producing technologies is necessary to further-expand the formulation design space. Therefore, the following research is an effort to expand the formulation design space of poorly water-soluble drugs while forming amorphous solid dispersions. The following research focuses on continued innovation in the field of amorphous solid dispersions to enhance the bioavailability of poorly water-soluble drugs. These research directions demonstrate innovative use of an ordinary excipient to enhance delivery of amorphous solid dispersions processed by hot melt extrusion. Additionally, these studies demonstrate the use (and further understanding) of a novel technology, KinetiSol, that allows for processing amorphous solid dispersions without the necessity of external thermal input or solvent(s). KinetiSol-processed materials are compared with spray dried materials to evaluate the kinetics behind drug release of a weakly basic drug processed with an ionic polymer, and findings from this study will be essential for future delivery of amorphous solid dispersions of weakly basic drugs in ionic polymers

Book Solid Dispersion As A Solubility Enhancement Technique

Download or read book Solid Dispersion As A Solubility Enhancement Technique written by Kalpen Patel and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid dispersion was prepared by solvent evaporation technique and it is optimized by using different of polymer and lipid ratios. The prepared solid dispersions were evaluated for solubility study, assay and in vitro dissolution study. The solid state property was characterized by differential scanning Calorimetry(DSC). The solubility and dissolution rate were found significantly increased in these solid dispersion systems compared with pure drug alone. The highest improvement of solubility and dissolution rate was found with PEG 6000 and 45 mg phosphatidycholine. DSC studies of solid dispersions confirmed the there is no interaction between drug with excipients. This is attributed to improve bioavailability due to enhancement in rate and extent of drug release. The preparation of solid dispersion is a promising strategy to improve the solubility and dissolution of drug of low solubility and thereby bioavailability of the drug. The solvent evaporation method could be considered as a simple method for preparation of solid dispersion within a shorter period of times.

Book Formulation and Optimization of Solid Dispersions by Boxbehnken Design

Download or read book Formulation and Optimization of Solid Dispersions by Boxbehnken Design written by Niranjan Chivate and published by LAP Lambert Academic Publishing. This book was released on 2012-06 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this study was to prepare and evaluate solid dispersion of poorly water soluble drug Telmisartan, a candidate mainly from the class II category of BCS classification, to increase solubility and for enhancement of bioavailability. The solid dispersions were prepared by physical mixture method using PEG 6000, Eudrajit L 100 and PVP K 30 as a carrier. A Box Behnken design has been applied to study the effect of independent variables i.e. PEG 6000, Eudrajit L 100 and PVP K 30 on dependent variables i.e. % Cumulative Drug Release and time required for cumulative drug release . Response surface plots and counter plots were drawn and optimum formulations were selected based on feasibility search method. Validation of optimized study performed using three confirmatory runs indicated very high degree of prognostic ability of response surface methodology, with mean percentage error as +0.02. Optimized solid dispersion formulations were prepared and its effect on % Cumulative Drug Release and time was evaluated. Optimized solid dispersions were evaluated for % CDR and Time for CDR, FTIR, DSC, SEM and in vitro drug release study.

Book Drug Delivery Strategies for Poorly Water Soluble Drugs

Download or read book Drug Delivery Strategies for Poorly Water Soluble Drugs written by Dionysios Douroumis and published by John Wiley & Sons. This book was released on 2012-12-19 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many newly proposed drugs suffer from poor water solubility, thus presenting major hurdles in the design of suitable formulations for administration to patients. Consequently, the development of techniques and materials to overcome these hurdles is a major area of research in pharmaceutical companies. Drug Delivery Strategies for Poorly Water-Soluble Drugs provides a comprehensive overview of currently used formulation strategies for hydrophobic drugs, including liposome formulation, cyclodextrin drug carriers, solid lipid nanoparticles, polymeric drug encapsulation delivery systems, self–microemulsifying drug delivery systems, nanocrystals, hydrosol colloidal dispersions, microemulsions, solid dispersions, cosolvent use, dendrimers, polymer- drug conjugates, polymeric micelles, and mesoporous silica nanoparticles. For each approach the book discusses the main instrumentation, operation principles and theoretical background, with a focus on critical formulation features and clinical studies. Finally, the book includes some recent and novel applications, scale-up considerations and regulatory issues. Drug Delivery Strategies for Poorly Water-Soluble Drugs is an essential multidisciplinary guide to this important area of drug formulation for researchers in industry and academia working in drug delivery, polymers and biomaterials.

Book Hot Melt Extrusion

    Book Details:
  • Author : Dennis Douroumis
  • Publisher : John Wiley & Sons
  • Release : 2012-04-24
  • ISBN : 1118307879
  • Pages : 404 pages

Download or read book Hot Melt Extrusion written by Dennis Douroumis and published by John Wiley & Sons. This book was released on 2012-04-24 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hot-melt extrusion (HME) - melting a substance and forcing it through an orifice under controlled conditions to form a new material - is an emerging processing technology in the pharmaceutical industry for the preparation of various dosage forms and drug delivery systems, for example granules and sustained release tablets. Hot-Melt Extrusion: Pharmaceutical Applications covers the main instrumentation, operation principles and theoretical background of HME. It then focuses on HME drug delivery systems, dosage forms and clinical studies (including pharmacokinetics and bioavailability) of HME products. Finally, the book includes some recent and novel HME applications, scale -up considerations and regulatory issues. Topics covered include: principles and die design of single screw extrusion twin screw extrusion techniques and practices in the laboratory and on production scale HME developments for the pharmaceutical industry solubility parameters for prediction of drug/polymer miscibility in HME formulations the influence of plasticizers in HME applications of polymethacrylate polymers in HME HME of ethylcellulose, hypromellose, and polyethylene oxide bioadhesion properties of polymeric films produced by HME taste masking using HME clinical studies, bioavailability and pharmacokinetics of HME products injection moulding and HME processing for pharmaceutical materials laminar dispersive & distributive mixing with dissolution and applications to HME technological considerations related to scale-up of HME processes devices and implant systems by HME an FDA perspective on HME product and process understanding improved process understanding and control of an HME process with near-infrared spectroscopy Hot-Melt Extrusion: Pharmaceutical Applications is an essential multidisciplinary guide to the emerging pharmaceutical uses of this processing technology for researchers in academia and industry working in drug formulation and delivery, pharmaceutical engineering and processing, and polymers and materials science. This is the first book from our brand new series Advances in Pharmaceutical Technology. Find out more about the series here.

Book Pharmaceutical Amorphous Solid Dispersions

Download or read book Pharmaceutical Amorphous Solid Dispersions written by Ann Newman and published by John Wiley & Sons. This book was released on 2015-03-09 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a roadmap from early to late stages of drug development, this book overviews amorphous solid dispersion technology – a leading platform to deliver poorly water soluble drugs, a major hurdle in today’s pharmaceutical industry. • Helps readers understand amorphous solid dispersions and apply techniques to particular pharmaceutical systems • Covers physical and chemical properties, screening, scale-up, formulation, drug product manufacture, intellectual property, and regulatory considerations • Has an appendix with structure and property information for polymers commonly used in drug development and with marketed drugs developed using the amorphous sold dispersion approach • Addresses global regulatory issues including USA regulations, ICH guidelines, and patent concerns around the world

Book Water Insoluble Drug Formulation

Download or read book Water Insoluble Drug Formulation written by Ron Liu and published by CRC Press. This book was released on 2000-09-30 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delivering drugs in a water-insoluble formulation is a critical matter in therapeutic drug development. However, because a drug molecule has to be water soluble to be readily delivered to the cellular membrane while retaining its hydrophobic properties, issues surrounding water insolubility can postpone - or completely derail - important new drug development. Even much needed reformulation of currently marketed products can be significantly affected by these issues. This book systematically describes the techniques used for water-insoluble formulations, providing step-by-step guidance as well as scientific background on drug and water properties and how they contribute to solubilization and dissolution. A world-class team of experts discusses how these issues are viewed - and solved - by key industry and R&D institutions. This book provides a handy reference for pharmaceutical scientists in the handling of formulation issues related to water-insoluble drugs. In addition, this book may be useful to pharmacy and chemistry undergraduate students, and pharmaceutical and biopharmaceutical graduate students, to enhance their knowledge in the techniques of drug solubilization and dissolution enhancement.

Book Thermal Infrared and Solubility Study Of Repaglinide Solid Dispersion

Download or read book Thermal Infrared and Solubility Study Of Repaglinide Solid Dispersion written by Tahiatul Shams and published by LAP Lambert Academic Publishing. This book was released on 2012-07 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid dispersion techniques have been widely used as an effective method for enhancing the dissolution rate and bioavailability of poorly water soluble drugs. Current study was conducted to reveal the possibility of preparing repaglinide solid dispersions with improved aqueous solubility and dissolution rate, which will solve the difficulties in the development of pharmaceutical dosage forms of poorly water soluble drugs due to their limited water solubility, slow dissolution rate and low bioavailability. Repaglinide solid dispersion was prepared considering different variable factors: solvent variation (methanol, ethanol), polymer variation (HPMC, HPC, poloxomer, povidone K 12, povidone K 30), diluent variation (avicel, microcellac, aerosil, cross carmellose sodium, povidone VA 64, kollidon CL, talc), Drug load variation, effect of PEG 6000 content and drug release profile for different formulations was studied. Infrared spectroscopy and Thermal analysis by differential scanning calorimeter were studied. The results showed that the incorporation of different polymers transforms crystalline repaglinide into amorphous state, thus increasing its solubility and dissolution rate.

Book Poorly Soluble Drugs

    Book Details:
  • Author : Gregory K. Webster
  • Publisher : CRC Press
  • Release : 2017-01-06
  • ISBN : 9814745464
  • Pages : 728 pages

Download or read book Poorly Soluble Drugs written by Gregory K. Webster and published by CRC Press. This book was released on 2017-01-06 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first text to provide a comprehensive assessment of the application of fundamental principles of dissolution and drug release testing to poorly soluble compounds and formulations. Such drug products are, vis-à-vis their physical and chemical properties, inherently incompatible with aqueous dissolution. However, dissolution methods are required for product development and selection, as well as for the fulfillment of regulatory obligations with respect to biopharmaceutical assessment and product quality understanding. The percentage of poorly soluble drugs, defined in classes 2 and 4 of the Biopharmaceutics Classification System (BCS), has significantly increased in the modern pharmaceutical development pipeline. This book provides a thorough exposition of general method development strategies for such drugs, including instrumentation and media selection, the use of compendial and non-compendial techniques in product development, and phase-appropriate approaches to dissolution development. Emerging topics in the field of dissolution are also discussed, including biorelevant and biphasic dissolution, the use on enzymes in dissolution testing, dissolution of suspensions, and drug release of non-oral products. Of particular interest to the industrial pharmaceutical professional, a brief overview of the formulation and solubilization techniques employed in the development of BCS class 2 and 4 drugs to overcome solubility challenges is provided and is complemented by a collection of chapters that survey the approaches and considerations in developing dissolution methodologies for enabling drug delivery technologies, including nanosuspensions, lipid-based formulations, and stabilized amorphous drug formulations.

Book Melt Extrusion

    Book Details:
  • Author : Michael A. Repka
  • Publisher : Springer Science & Business Media
  • Release : 2013-10-11
  • ISBN : 1461484324
  • Pages : 472 pages

Download or read book Melt Extrusion written by Michael A. Repka and published by Springer Science & Business Media. This book was released on 2013-10-11 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides readers with the basic principles and fundamentals of extrusion technology and a detailed description of the practical applications of a variety of extrusion processes, including various pharma grade extruders. In addition, the downstream production of films, pellets and tablets, for example, for oral and other delivery routes, are presented and discussed utilizing melt extrusion. This book is the first of its kind that discusses extensively the well-developed science of extrusion technology as applied to pharmaceutical drug product development and manufacturing. By covering a wide range of relevant topics, the text brings together all technical information necessary to develop and market pharmaceutical dosage forms that meet current quality and regulatory requirements. As extrusion technology continues to be refined further, usage of extruder systems and the array of applications will continue to expand, but the core technologies will remain the same.

Book Development and Characterization of Ternary Solid Dispersion Granules of Poorly Water Soluble Drugs

Download or read book Development and Characterization of Ternary Solid Dispersion Granules of Poorly Water Soluble Drugs written by Niraja Patel and published by . This book was released on 2011 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this study was to increase the solubility of two poorly water soluble drugs, namely Diflunisal USP and Mefenamic Acid USP, by the formation of ternary solid dispersion granules with a dispersion carrier and an adsorbent. The study also includes characterization of the ternary solid dispersion granules for their physicochemical properties initially and after storage for 3 months. The dispersion carrier used for this study was Gelucire 50/13® and the adsorbent was Neusilin US2®. The fusion (hot melt) granulation method was used to prepare the ternary solid dispersion granules. Various characterization techniques were used to characterize the solid dispersion including Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction (XRPD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and in vitro dissolution studies. The DSC data represents the ternary mixture of the drug (diflunisal or mefenamic acid), dispersion carrier (Gelucire50/13®) and adsorbent (Neusilin US2®), which formed the solid dispersion. The XRPD results confirmed the highly crystalline nature of the pure drug (diflunisal or mefenamic acid) and the conversion of the drug to the amorphous state in the solid dispersions. The FTIR study reveals hydrogen bonding which leads to solid dispersion formation. No other chemical interaction was observed between the components of the ternary solid dispersion granule. The SEM study provided evidence of the highly crystalline nature for the pure drug and the amorphous nature for the ternary solid phase dispersion. In vitro dissolution data reveals a significant increase in drug solubility from the ternary solid dispersion granule as compared to the solubility for the pure drug. The ternary solid dispersion granule formed for diflunisal and mefenamic acid were highly amorphous and able to significantly increase the solubility of each drug. Stability studies were performed for the solid dispersion of both the drugs (diflunisal and mefenamic acid) by subjecting them to different isothermal temperatures (25°C, 30°C, 35°C and 40°C) and relative humidity conditions (22.5% RH, 52.89% RH, 75.29% RH and 100% RH) for three months. The solid dispersion for both drugs (diflunisal and mefenamic acid) remained unaffected by the temperature and humidity conditions to which they were exposed throughout the three months period. Thus, in this study, the ternary solid dispersion granules for the two poorly water soluble drugs (diflunisal and mefenamic acid) were formulated which showed an increased dissolution as well as rate. The solid dispersion granules were extremely stable for three month under accelerated temperature and humidity conditions.

Book Innovative Dosage Forms

    Book Details:
  • Author : Yogeshwar Bachhav
  • Publisher : John Wiley & Sons
  • Release : 2019-12-04
  • ISBN : 3527343962
  • Pages : 470 pages

Download or read book Innovative Dosage Forms written by Yogeshwar Bachhav and published by John Wiley & Sons. This book was released on 2019-12-04 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaches future and current drug developers the latest innovations in drug formulation design and optimization This highly accessible, practice-oriented book examines current approaches in the development of drug formulations for preclinical and clinical studies, including the use of functional excipients to enhance solubility and stability. It covers oral, intravenous, topical, and parenteral administration routes. The book also discusses safety aspects of drugs and excipients, as well as regulatory issues relevant to formulation. Innovative Dosage Forms: Design and Development at Early Stage starts with a look at the impact of the polymorphic form of drugs on the preformulation and formulation development. It then offers readers reliable strategies for the formulation development of poorly soluble drugs. The book also studies the role of reactive impurities from the excipients on the formulation shelf life; preclinical formulation assessment of new chemical entities; and regulatory aspects for formulation design. Other chapters cover innovative formulations for special indications, including oncology injectables, delayed release and depot formulations; accessing pharmacokinetics of various dosage forms; physical characterization techniques to assess amorphous nature; novel formulations for protein oral dosage; and more. -Provides information that is essential for the drug development effort -Presents the latest advances in the field and describes in detail innovative formulations, such as nanosuspensions, micelles, and cocrystals -Describes current approaches in early pre-formulation to achieve the best in vivo results -Addresses regulatory and safety aspects, which are key considerations for pharmaceutical companies -Includes case studies from recent drug development programs to illustrate the practical challenges of preformulation design Innovative Dosage Forms: Design and Development at Early Stage provides valuable benefits to interdisciplinary drug discovery teams working in industry and academia and will appeal to medicinal chemists, pharmaceutical chemists, and pharmacologists.

Book BIOMIMETIC DISSOLUTION

    Book Details:
  • Author : Michael McBride Puppolo
  • Publisher :
  • Release : 2017
  • ISBN :
  • Pages : 411 pages

Download or read book BIOMIMETIC DISSOLUTION written by Michael McBride Puppolo and published by . This book was released on 2017 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: The pharmaceutical industry is at a critical juncture. With little remnants of the "Golden Age of the Pharmaceuticals" and applied pressure from large companies experiencing a dissipation of proprietary compounds, trends indicate a transition from a decade of stagnant productivity to one in which high throughput screening technologies and computational chemistry have diversified the discovery of new chemical entities (NCE). Despite these advances, drug discovery has been challenged by chemical entities that present delivery limitations due to the properties of their molecular structure. A recent evaluation of development pipelines indicated that approximately 70% of drug candidates exhibit poor aqueous solubility; thereby, resulting in erratic dissolution and insufficient bioavailability. Due to intrinsic physical properties, these compounds are known by the biopharmaceutics classification system (BCS) as class II compounds and are amendable to solubility and bioavailability enhancement platforms. Approaches such as pH adjustment, micronization, nanosuspensions, co-solvent solubilization, cyclodextrin inclusion complexation, salt formation, emulsified drug formulations and amorphous solid dispersions (ASD) are commonly utilized to maximize bioavailability and enrich in vivo absorption by prolonging exposure to high concentrations of dissolved drug in the gastrointestinal tract (GIT). Single-phase amorphous systems, such as solid dispersions, have been the focal point of the aforementioned practices as a result of their ability to promote a state of drug supersaturation over an extended duration of time. Within the structure of this dissertation, the application of concentration enhancing polymers for bioavailability enhancement of low solubility compounds was evaluated using solvent and fusion-based solid dispersion technologies. Exploiting a variety of analytical methodologies and tools, formulations produced by spray drying and hot melt extrusion (HME) techniques were investigated for sufficient dissolution enhancement. Studies revealed the selected formulation approaches provided a viable platform for manufacturing solid dispersions by illustrating systems that offered rapid and prolonged periods of supersaturation. While of the applications of single-phase amorphous solid dispersions are continuously expanding, their dissolution behavior is not as well understood. The overarching objective of dissolution testing during formulation development is to achieve biological relevance and predict in vivo performance. Proper in vitro dissolution testing can convey the influence of key in vivo performance parameters and be implemented for assessment and comparison of ASD formulations. Studies suggest that existing research fails to accurately address the intricacies associated with the supersaturated state. Upon solvation and during transit in the GIT, several high-energy drug-containing species are present in addition to free drug. Although these species are not absorbed in vivo, they play a pivotal role in generating and maintaining the supersaturation of a drug substance and function to replenish the supply of free drug as it permeates across the gastrointestinal membrane. Established dissolution apparatuses and methodologies in the United States Pharmacopeia (USP) focus on evaluation of total dissolved drug and may not be physiologically relevant for determining the amount of drug absorbed in vivo. Within the framework of this dissertation, a dissolution methodology was designed to reflect the physiochemical, physiological and hydrodynamic conditions that transpire throughout dissolution and absorption of an ASD during transit in the GIT. The apparatus and model present the ability to understand the kinetics and mechanisms of dissolution, supersaturation and nucleation. To support this hypothesis, analytical methods including high pressure liquid chromatography (HPLC) with ultraviolet (UV) detection were developed and fully validated. In parallel, a novel plasma membrane treatment was established to fabricate biomimetic membranes that possessed a hydrophilic and hydrophobic surface. The treated membranes are comprised of applied surface chemistries that emulate the unstirred aqueous layer created by microvilli protruding from the intestinal epithelial membrane as well as lipophilic constituents corresponding to the epithelial lipid membrane. Calculated in vitro similarity (f2) and difference (f1) factors support the hypotheses that plasma treated microporous polymer membranes exhibit biorelevant properties and demonstrate adequate biorelevance for in vitro dissolution studies. The described dissolution methodology has been applied as a tool for selection of candidates to move forward to pharmacokinetic studies. In a culminating study, in vitro - in vivo correlations (IVIVC) were performed employing the universal membrane-permeation non-sink dissolution method for formulations of Carbamazepine. To demonstrate the utility of the methodology, multiple level C correlations were established. The membrane-permeation model enables quantitative assessment of drug dissolution and absorption and offers a means to predict the relative in vivo performance of amorphous solid dispersions for BCS class II drug substances.