EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonparametric Econometrics

Download or read book Nonparametric Econometrics written by Qi Li and published by Princeton University Press. This book was released on 2011-10-09 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.

Book Density Estimation for Statistics and Data Analysis

Download or read book Density Estimation for Statistics and Data Analysis written by Bernard. W. Silverman and published by Routledge. This book was released on 2018-02-19 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician. The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text. Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.

Book Selected Topics in Characteristic Functions

Download or read book Selected Topics in Characteristic Functions written by Nikolai G. Ushakov and published by Walter de Gruyter. This book was released on 2011-11-02 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.

Book Python Data Science Handbook

Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Book Smoothing Methods in Statistics

Download or read book Smoothing Methods in Statistics written by Jeffrey S. Simonoff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.

Book Nonparametric Density Estimation

Download or read book Nonparametric Density Estimation written by Luc Devroye and published by New York ; Toronto : Wiley. This book was released on 1985-01-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a rigorous, systematic treatment of density estimates, their construction, use and analysis with full proofs. It develops L1 theory, rather than the classical L2, showing how L1 exposes fundamental properties of density estimates masked by L2.

Book Uniform Central Limit Theorems

Download or read book Uniform Central Limit Theorems written by R. M. Dudley and published by Cambridge University Press. This book was released on 1999-07-28 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatise by an acknowledged expert includes several topics not found in any previous book.

Book Kernel Smoothing in MATLAB

Download or read book Kernel Smoothing in MATLAB written by Ivana Horová and published by World Scientific. This book was released on 2012 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Offers a comprehensive overview of statistical theory and emphases the implementation of presented methods in Matlab. This title contains various Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard function, indices of quality and bivariate density.

Book Nonparametric Kernel Density Estimation and Its Computational Aspects

Download or read book Nonparametric Kernel Density Estimation and Its Computational Aspects written by Artur Gramacki and published by Springer. This book was released on 2017-12-21 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.

Book Information Bounds and Nonparametric Maximum Likelihood Estimation

Download or read book Information Bounds and Nonparametric Maximum Likelihood Estimation written by P. Groeneboom and published by Springer Science & Business Media. This book was released on 1992-07-31 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the lecture notes for a DMV course presented by the authors at Gunzburg, Germany, in September, 1990. In the course we sketched the theory of information bounds for non parametric and semiparametric models, and developed the theory of non parametric maximum likelihood estimation in several particular inverse problems: interval censoring and deconvolution models. Part I, based on Jon Wellner's lectures, gives a brief sketch of information lower bound theory: Hajek's convolution theorem and extensions, useful minimax bounds for parametric problems due to Ibragimov and Has'minskii, and a recent result characterizing differentiable functionals due to van der Vaart (1991). The differentiability theorem is illustrated with the examples of interval censoring and deconvolution (which are pursued from the estimation perspective in part II). The differentiability theorem gives a way of clearly distinguishing situations in which 1 2 the parameter of interest can be estimated at rate n / and situations in which this is not the case. However it says nothing about which rates to expect when the functional is not differentiable. Even the casual reader will notice that several models are introduced, but not pursued in any detail; many problems remain. Part II, based on Piet Groeneboom's lectures, focuses on non parametric maximum likelihood estimates (NPMLE's) for certain inverse problems. The first chapter deals with the interval censoring problem.

Book Introduction to Empirical Processes and Semiparametric Inference

Download or read book Introduction to Empirical Processes and Semiparametric Inference written by Michael R. Kosorok and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.

Book Orthogonal Polynomials on the Unit Circle

Download or read book Orthogonal Polynomials on the Unit Circle written by Barry Simon and published by American Mathematical Soc.. This book was released on 2009-08-05 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szego's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by $z$ (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line.

Book Statistical Inference Based on Kernel Distribution Function Estimators

Download or read book Statistical Inference Based on Kernel Distribution Function Estimators written by Rizky Reza Fauzi and published by Springer Nature. This book was released on 2023-05-31 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved—that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.

Book Introduction to Nonparametric Estimation

Download or read book Introduction to Nonparametric Estimation written by Alexandre B. Tsybakov and published by Springer Science & Business Media. This book was released on 2008-10-22 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.

Book Hilbert Space Methods in Probability and Statistical Inference

Download or read book Hilbert Space Methods in Probability and Statistical Inference written by Christopher G. Small and published by John Wiley & Sons. This book was released on 2011-09-15 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains how Hilbert space techniques cross the boundaries into the foundations of probability and statistics. Focuses on the theory of martingales stochastic integration, interpolation and density estimation. Includes a copious amount of problems and examples.

Book Smoothing of Multivariate Data

Download or read book Smoothing of Multivariate Data written by Jussi Sakari Klemelä and published by John Wiley & Sons. This book was released on 2009-09-04 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: An applied treatment of the key methods and state-of-the-art tools for visualizing and understanding statistical data Smoothing of Multivariate Data provides an illustrative and hands-on approach to the multivariate aspects of density estimation, emphasizing the use of visualization tools. Rather than outlining the theoretical concepts of classification and regression, this book focuses on the procedures for estimating a multivariate distribution via smoothing. The author first provides an introduction to various visualization tools that can be used to construct representations of multivariate functions, sets, data, and scales of multivariate density estimates. Next, readers are presented with an extensive review of the basic mathematical tools that are needed to asymptotically analyze the behavior of multivariate density estimators, with coverage of density classes, lower bounds, empirical processes, and manipulation of density estimates. The book concludes with an extensive toolbox of multivariate density estimators, including anisotropic kernel estimators, minimization estimators, multivariate adaptive histograms, and wavelet estimators. A completely interactive experience is encouraged, as all examples and figurescan be easily replicated using the R software package, and every chapter concludes with numerous exercises that allow readers to test their understanding of the presented techniques. The R software is freely available on the book's related Web site along with "Code" sections for each chapter that provide short instructions for working in the R environment. Combining mathematical analysis with practical implementations, Smoothing of Multivariate Data is an excellent book for courses in multivariate analysis, data analysis, and nonparametric statistics at the upper-undergraduate and graduatelevels. It also serves as a valuable reference for practitioners and researchers in the fields of statistics, computer science, economics, and engineering.

Book Kernel Smoothing

    Book Details:
  • Author : M.P. Wand
  • Publisher : CRC Press
  • Release : 1994-12-01
  • ISBN : 9780412552700
  • Pages : 230 pages

Download or read book Kernel Smoothing written by M.P. Wand and published by CRC Press. This book was released on 1994-12-01 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function. This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilitated by the authors' focus on the simplest settings, namely density estimation and nonparametric regression. They pay particular attention to the problem of choosing the smoothing parameter of a kernel smoother, and also treat the multivariate case in detail. Kernal Smoothing is self-contained and assumes only a basic knowledge of statistics, calculus, and matrix algebra. It is an invaluable introduction to the main ideas of kernel estimation for students and researchers from other discipline and provides a comprehensive reference for those familiar with the topic.