EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Deep Learning Based Multi modal Perception and Semi automatic Labelling Algorithms for Automotive Sensor Data

Download or read book Deep Learning Based Multi modal Perception and Semi automatic Labelling Algorithms for Automotive Sensor Data written by Christian Haase-Schütz and published by BoD – Books on Demand. This book was released on 2023 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multimodal Scene Understanding

Download or read book Multimodal Scene Understanding written by Michael Ying Yang and published by Academic Press. This book was released on 2019-07-16 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful. - Contains state-of-the-art developments on multi-modal computing - Shines a focus on algorithms and applications - Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning

Book Millimeter Wave Radar

Download or read book Millimeter Wave Radar written by Stephen L. Johnston and published by . This book was released on 1980 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Creating Autonomous Vehicle Systems

Download or read book Creating Autonomous Vehicle Systems written by Shaoshan Liu and published by Morgan & Claypool Publishers. This book was released on 2017-10-25 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.

Book Driving to Safety

Download or read book Driving to Safety written by Nidhi Kalra and published by . This book was released on 2016 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book TinyML

    Book Details:
  • Author : Pete Warden
  • Publisher : O'Reilly Media
  • Release : 2019-12-16
  • ISBN : 1492052019
  • Pages : 504 pages

Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Book Road Vehicle Automation 3

Download or read book Road Vehicle Automation 3 written by Gereon Meyer and published by Springer. This book was released on 2016-07-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

Book Introduction to Machine Learning

Download or read book Introduction to Machine Learning written by Ethem Alpaydin and published by MIT Press. This book was released on 2014-08-22 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

Book Polarimetric Radar Imaging

Download or read book Polarimetric Radar Imaging written by Jong-Sen Lee and published by CRC Press. This book was released on 2017-12-19 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent launches of three fully polarimetric synthetic aperture radar (PolSAR) satellites have shown that polarimetric radar imaging can provide abundant data on the Earth’s environment, such as biomass and forest height estimation, snow cover mapping, glacier monitoring, and damage assessment. Written by two of the most recognized leaders in this field, Polarimetric Radar Imaging: From Basics to Applications presents polarimetric radar imaging and processing techniques and shows how to develop remote sensing applications using PolSAR imaging radar. The book provides a substantial and balanced introduction to the basic theory and advanced concepts of polarimetric scattering mechanisms, speckle statistics and speckle filtering, polarimetric information analysis and extraction techniques, and applications typical to radar polarimetric remote sensing. It explains the importance of wave polarization theory and the speckle phenomenon in the information retrieval problem of microwave imaging and inverse scattering. The authors demonstrate how to devise intelligent information extraction algorithms for remote sensing applications. They also describe more advanced polarimetric analysis techniques for polarimetric target decompositions, polarization orientation effects, polarimetric scattering modeling, speckle filtering, terrain and forest classification, manmade target analysis, and PolSAR interferometry. With sample PolSAR data sets and software available for download, this self-contained, hands-on book encourages you to analyze space-borne and airborne PolSAR and polarimetric interferometric SAR (Pol-InSAR) data and then develop applications using this data.

Book Context Enhanced Information Fusion

Download or read book Context Enhanced Information Fusion written by Lauro Snidaro and published by Springer. This book was released on 2016-05-25 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text reviews the fundamental theory and latest methods for including contextual information in fusion process design and implementation. Chapters are contributed by the foremost international experts, spanning numerous developments and applications. The book highlights high- and low-level information fusion problems, performance evaluation under highly demanding conditions, and design principles. A particular focus is placed on approaches that integrate research from different communities, emphasizing the benefit of combining different techniques to overcome the limitations of a single perspective. Features: introduces the terminology and core elements in information fusion and context; presents key themes for context-enhanced information fusion; discusses design issues in developing context-aware fusion systems; provides mathematical grounds for modeling the contextual influences in representative fusion problems; describes the fusion of hard and soft data; reviews a diverse range of applications.

Book Dynamic Data Driven Applications Systems

Download or read book Dynamic Data Driven Applications Systems written by Frederica Darema and published by Springer Nature. This book was released on 2020-11-02 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Conference on Dynamic Data Driven Application Systems, DDDAS 2020, held in Boston, MA, USA, in October 2020. The 21 full papers and 14 short papers presented in this volume were carefully reviewed and selected from 40 submissions. They cover topics such as: digital twins; environment cognizant adaptive-planning systems; energy systems; materials systems; physics-based systems analysis; imaging methods and systems; and learning systems.

Book General Video Game Artificial Intelligence

Download or read book General Video Game Artificial Intelligence written by Diego Pérez Liébana and published by Morgan & Claypool Publishers. This book was released on 2019-10-09 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on general video game playing aims at designing agents or content generators that can perform well in multiple video games, possibly without knowing the game in advance and with little to no specific domain knowledge. The general video game AI framework and competition propose a challenge in which researchers can test their favorite AI methods with a potentially infinite number of games created using the Video Game Description Language. The open-source framework has been used since 2014 for running a challenge. Competitors around the globe submit their best approaches that aim to generalize well across games. Additionally, the framework has been used in AI modules by many higher-education institutions as assignments, or as proposed projects for final year (undergraduate and Master's) students and Ph.D. candidates. The present book, written by the developers and organizers of the framework, presents the most interesting highlights of the research performed by the authors during these years in this domain. It showcases work on methods to play the games, generators of content, and video game optimization. It also outlines potential further work in an area that offers multiple research directions for the future.

Book The Micro doppler Effect in Radar

Download or read book The Micro doppler Effect in Radar written by Victor C. Chen and published by Artech House. This book was released on 2011 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Doppler Effect can be thought of as the change in frequency of a wave for an observer moving relative to the source of the wave. In radar, it is used to measure the velocity of detected objects. This highly practical resource provides thorough working knowledge of the micro-Doppler effect in radar, including its principles, applications and implementation with MATLAB codes. The book presents code for simulating radar backscattering from targets with various motions, generating micro-Doppler signatures, and analyzing the characteristics of targets. In this title, professionals will find detailed descriptions of the physics and mathematics of the Doppler and micro-Doppler effect. The book provides a wide range of clear examples, including an oscillating pendulum, a spinning and precession heavy top, rotating rotor blades of a helicopter, rotating wind-turbine blades, a person walking with swinging arms and legs, a flying bird, and movements of quadruped animals.

Book Optimization for Machine Learning

Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Book Neural Network Perception for Mobile Robot Guidance

Download or read book Neural Network Perception for Mobile Robot Guidance written by Dean A. Pomerleau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dean Pomerleau's trainable road tracker, ALVINN, is arguably the world's most famous neural net application. It currently holds the world's record for distance traveled by an autonomous robot without interruption: 21.2 miles along a highway, in traffic, at speedsofup to 55 miles per hour. Pomerleau's work has received worldwide attention, including articles in Business Week (March 2, 1992), Discover (July, 1992), and German and Japanese science magazines. It has been featured in two PBS series, "The Machine That Changed the World" and "By the Year 2000," and appeared in news segments on CNN, the Canadian news and entertainment program "Live It Up", and the Danish science program "Chaos". What makes ALVINN especially appealing is that it does not merely drive - it learns to drive, by watching a human driver for roughly five minutes. The training inputstothe neural networkare a video imageoftheroad ahead and thecurrentposition of the steering wheel. ALVINN has learned to drive on single lane, multi-lane, and unpaved roads. It rapidly adapts to other sensors: it learned to drive at night using laser reflectance imaging, and by using a laser rangefinder it learned to swerve to avoid obstacles and maintain a fixed distance from a row of parked cars. It has even learned to drive backwards.

Book Deep Learning for Biomedical Applications

Download or read book Deep Learning for Biomedical Applications written by Utku Kose and published by CRC Press. This book was released on 2021-07-19 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a detailed reference on biomedical applications using Deep Learning. Because Deep Learning is an important actor shaping the future of Artificial Intelligence, its specific and innovative solutions for both medical and biomedical are very critical. This book provides a recent view of research works on essential, and advanced topics. The book offers detailed information on the application of Deep Learning for solving biomedical problems. It focuses on different types of data (i.e. raw data, signal-time series, medical images) to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, image processing perspectives, and even genomics. It takes the reader through different sides of Deep Learning oriented solutions. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educations who are working in the context of the topics.

Book Explainable AI  Interpreting  Explaining and Visualizing Deep Learning

Download or read book Explainable AI Interpreting Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.