EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Deciphering Natural Allelic Variation in Switchgrass for Biomass Yield and Quality Using a Nested Association Mapping Population

Download or read book Deciphering Natural Allelic Variation in Switchgrass for Biomass Yield and Quality Using a Nested Association Mapping Population written by and published by . This book was released on 2016 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (Panicum virgatum L.) is a C4 grass with high biomass yield potential and a model species for bioenergy feedstock development. Understanding the genetic basis of quantitative traits is essential to facilitate genome-enabled breeding programs. The nested association mapping (NAM) analysis combines the best features of both bi-parental and association analyses and can provide high power and high resolution in QTL detection and will ensure significant improvements in biomass yield and quality. To develop a NAM population of switchgrass, 15 highly diverse genotypes with specific characteristics were selected from a diversity panel and crossed to a recurrent parent, AP13, a genotype selected for whole genome sequencing and parent of a mapping population. Ten genotypes from each of the 15 F1 families were then chain crossed. Progenies form each family were randomly selected to develop the NAM population. The switchgrass NAM population consists of a total of 2000 genotypes from 15 families. All the progenies, founder parents, F1 parents (n=2350) were evaluated in replicated field trials at Ardmore, OK and Knoxville, TN. Phenotypic data on plant height, tillering ability, regrowth, flowering time, and biomass yield were collected. Dried biomass samples were also analyzed using prediction equations of NIRS at the Noble Foundation and for lignin content, S/G ratio, and sugar release characteristics at the NREL. Genomic shotgun sequencing of 15 switchgrass NAM founder parental genomes at JGI produced 28-66 Gb high-quality sequence data. Alignment of these sequences with the reference genome, AP13 (v3.0), revealed that up to 99% of the genomic sequences mapped to the reference genome. A total of 2,149 individuals from NAM populations were sequenced by exome capture and two sets of 15 SNP matrices (one for each family) were generated. QTL associated with important traits have been identified and verified in breeding populations. The QTL detected and their associated markers can be used in molecular breeding programs to facilitate development of improved switchgrass cultivars for biofuel production.

Book Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

Download or read book Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass written by and published by . This book was released on 2016 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other tr ...

Book Genetic Diversity  Genetic Variation and Identification of Quantitative Trait Loci  QTL  Associated with Biomass Yield and Establishment related Traits in Lowland Switchgrass  Panicum Virgatum L

Download or read book Genetic Diversity Genetic Variation and Identification of Quantitative Trait Loci QTL Associated with Biomass Yield and Establishment related Traits in Lowland Switchgrass Panicum Virgatum L written by Cheryl Ontolan Dalid and published by . This book was released on 2018 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass is a warm-season C4 grass used for biofuel production. The primary goal of this study is biomass yield improvement for use as a bioenergy feedstock. The research plan was partitioned into three main objectives: (i) evaluate the genetic diversity among lowland switchgrass populations using microsatellite markers; (ii) assess genetic variation in an Alamo half-sib (AHS) population developed through phenotypic selection; (iii) and identify quantitative trait loci (QTL) associated with biomass yield and establishment related seed traits using a Nested Association Mapping (NAM) population. The genetic diversity study on lowland switchgrass showed significant phenotypic variations (P

Book Compendium of Bioenergy Plants

Download or read book Compendium of Bioenergy Plants written by Hong Luo and published by CRC Press. This book was released on 2014-03-14 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the most comprehensive reviews on the latest development of switchgrass research including the agronomy of the plant, the use of endophytes and mycorrhizae for biomass production, genetics and breeding of bioenergy related traits, molecular genetics and molecular breeding, genomics, transgenics, processing, bioconversion, biosyst

Book Translational Genomics for the Improvement of Switchgrass

Download or read book Translational Genomics for the Improvement of Switchgrass written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Our objectives were to apply bioinformatics and high throughput sequencing technologies to identify and classify the genes involved in cell wall formation in maize and switchgrass. Targets for genetic modification were to be identified and cell wall materials isolated and assayed for enhanced performance in bioprocessing. We annotated and assembled over 750 maize genes into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice, and Arabidopsis sequences revealed differences in gene family structure. In addition, differences in expression between gene family members of Arabidopsis, maize and rice underscored the need for a grass-specific genetic model for functional analyses. A forward screen of mature leaves of field-grown maize lines by near-infrared spectroscopy yielded several dozen lines with heritable spectroscopic phenotypes, several of which near-infrared (nir) mutants had altered carbohydrate-lignin compositions. Our contributions to the maize genome sequencing effort built on knowledge of copy number variation showing that uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. For example, although about 25% of all duplicated genes remain genome-wide, all of the cellulose synthase (CesA) homologs were retained. We showed that guaiacyl and syringyl lignin in lignocellulosic cell-wall materials from stems demonstrate a two-fold natural variation in content across a population of maize Intermated B73 x Mo7 (IBM) recombinant inbred lines, a maize Association Panel of 282 inbreds and landraces, and three populations of the maize Nested Association Mapping (NAM) recombinant inbred lines grown in three years. We then defined quantitative trait loci (QTL) for stem lignin content measured using pyrolysis molecular-beam mass spectrometry, and glucose and xylose yield measured using an enzymatic hydrolysis assay. Among five multi-year QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study (GWAS) for lignin abundance and sugar yield of the 282-member maize Association Panel provided candidate genes in the eleven QTL and showed that many other alleles impacting these traits exist in the broader pool of maize genetic diversity. The maize B73 and Mo17 genotypes exhibited surprisingly large differences in gene expression in developing stem tissues, suggesting certain regulatory elements can significantly enhance activity of biomass synthesis pathways. Candidate genes, identified by GWAS or by differential expression, include genes of cell-wall metabolism, transcription factors associated with vascularization and fiber formation, and components of cellular signaling pathways. Our work provides new insights and strategies beyond modification of lignin to enhance yields of biofuels from genetically tailored biomass.

Book Establishment  Fertility and Harvest Management for Optimizing Switchgrass Yield and Quality as a Cellulosic Ethanol Feedstock in the Great Lakes Region

Download or read book Establishment Fertility and Harvest Management for Optimizing Switchgrass Yield and Quality as a Cellulosic Ethanol Feedstock in the Great Lakes Region written by Katherine Kelly Withers and published by . This book was released on 2010 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Genetic Dissection of Cell Wall Traits and Digestibility in Switchgrass

Download or read book Genetic Dissection of Cell Wall Traits and Digestibility in Switchgrass written by Shiyu Chen and published by . This book was released on 2016 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass is a favorable bioenergy crop due to its ability to provide lignocellulosic biomass at an energy efficient level. The presence of lignin and its interplay with hemicellulose in the secondary cell wall can inhibit enzymatic hydrolysis of the biomass, limit the ethanol yield and increase the cost of bioethanol production. Understanding the genetic control of cell wall traits could help improve the biomass quality for bioenergy production or forage utilization. The breeding populations selected for divergent digestibility provided a platform for identifying the genetic polymorphisms that could be associated with high digestibility. Four candidate genes, caffeic acid O-methyltransferase 1 & 2 genes (COMT1 & COMT2), Cinnamyl Alcohol Dehydrogenase 2 gene (CAD2) and 4-coumarate:coenzyme A ligase 1 (4CL1) were sequenced repeatedly in five divergent cycles. In total, 183 polymorphisms were identified and the allele frequencies were calculated at each polymorphic site using read counts of the allelic variants within each population. Twenty-five loci in the intron regions and four loci in coding regions of COMT1 and 4CL1 were found to display a selection signature. The recurrent divergent selection caused increased moderate allele frequencies in the cycle 3 reduced lignin population compared to the base population. To further understand the genetic of biomass quality traits in a genome context, genome-wide association study on lignin, hydroxycinnamates and digestibility was conducted in a diverse switchgrass panel. Single-SNP and gene-level association identified significant genes involved in metabolic pathways including carbon and carbohydrate metabolism, phytohormone metabolism, signaling pathways and transcription. The significant gene distributed across the genome with three regions containing clusters of genes from all traits. Genes in the carbon metabolic pathways are directly or indirectly involved in the signal pathways. The phytohormone signaling pathways of IAA, brassinosteroid and gibberellin could regulate cell elongation, cell cycle, and cell proliferation, and in turn result in phenotypic differences in the cell wall traits. The pathway significantly over-represented the functional groups annotated from association study, and also highlighted phenylpropanoid pathway, nucleotide metabolism, and circadian rhythm as pathways related to the cell wall traits.

Book Evaluation of Traits Associated with Breeding for Improved Biomass and Ethanol Yield in Switchgrass

Download or read book Evaluation of Traits Associated with Breeding for Improved Biomass and Ethanol Yield in Switchgrass written by Virginia Roseanna Sykes and published by . This book was released on 2014 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (Panicum virgatum L.) is a perennial, warm season grass that can be used as a biofuel. A greater understanding of the relationship of biomass yield and ethanol yield with disease susceptibility and morphological traits, estimation of the underlying genetic parameters of these traits, and the efficacy of selection at different maturity and under different production conditions could help breeders more effectively develop improved biofuel switchgrass cultivars. To examine these issues, three studies were performed. The first examined switchgrass leaves exhibiting low, medium, and high severity of rust symptoms, caused by infection with Puccinia emaculata. Results indicate P. emaculata infection may negatively impact ethanol yield in biofuels switchgrass with predicted ethanol yield reductions of 10% to 34% in leaves exhibiting medium rust severity and 21% to 51% in leaves exhibiting high rust severity. The second study analyzed a diallel of eight parents selected from the cultivars ‘Alamo’, ‘Kanlow’, and ‘Miami’. Correlations of morphological traits to biomass yield indicate a high biomass yielding ideotype of a tall plant with a high number of thick tillers, wide leaves, and an open canopy density. Traits with moderate correlations to biomass yield showed significant, but weak, negative correlations to ethanol yield. Significant SCA effects, maternal effects, and high parent heterosis were found within all traits. Selection during the establishment year did not differ significantly from selection in subsequent years. The third study used the same diallel populations but compared evaluations under space planted conditions to simulated swards. Evaluation under sward conditions differed from evaluation under space planted conditions for estimates of mean production performance, characterization of morphological traits, estimates of genetic parameters, identification of high GCA and SCA in populations, and identification of potential maternal effects or high parent heterosis. If sward conditions are more representative of production conditions, evaluation under space planted conditions could lead to assessment and selection of plants that are less than optimal in production conditions. Results from these three studies should help breeders identify more efficient and effective methods for improving biofuel switchgrass cultivars.

Book Genetic Improvement of Biomass Yield in Upland Switchgrass  Panicum Virgatum L   Using Secondary Plant Morphological Traits

Download or read book Genetic Improvement of Biomass Yield in Upland Switchgrass Panicum Virgatum L Using Secondary Plant Morphological Traits written by and published by . This book was released on 2013 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (Panicum virgatum L.) is currently undergoing intensive breeding efforts to improve biomass yield. Direct selection for biomass yield in switchgrass has proven difficult due to the many factors influencing biomass yield. In developing breeding schemes for increasing biomass yield, consideration must be made to the relative importance of spaced plantings to sward plots for evaluation and selection. It has previously been suggested that selection schemes using secondary plant morphological traits as selection criteria within spaced plantings may be an efficient method of making genetic gain. This research sought to identify secondary morphological traits in parental plants that are predictive of biomass yield in progeny swards, estimate heritability of secondary morphological traits and empirically test the effects of direct selection for secondary morphological traits on biomass yield. Limited predictive ability was observed for sward biomass yield using individual and combinations of plant morphological traits. A comparison of models using a Bayesian model averaging approach revealed common traits among the best predictive models including plant height, single-plant dry biomass, and second leaf width. Predictions of single-plant biomass, using the same set of morphological traits, revealed a large effect for tillering related traits. Moderate heritability was estimated for plant height and was greater for selection of increased height. Heritability for tiller count was low overall, with greater values observed for reduced tillering selections. Flowering date was estimated to have high heritability overall in both selection directions. Divergently selected populations for each trait were developed from the WS4U upland tetraploid germplasm and evaluated for biomass yield at five locations in Wisconsin during two growing seasons. Significant variation was observed between maternal parents of the selected populations for both selected and non-selected traits. Despite substantial differences between parent plant populations for plant morphology, significant differences were not observed for sward-plot biomass yield or sward-plot morphology relative to the base population. Results of this research demonstrate the challenges of selecting for increased biomass yield in switchgrass within spaced-plant nurseries. Based on these results it is recommended that greater emphasis be placed on evaluation biomass yield within sward plots for improving biomass yield.

Book Genetics and Genomics of Brachypodium

Download or read book Genetics and Genomics of Brachypodium written by John P. Vogel and published by Springer. This book was released on 2016-02-17 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grasses dominate many natural ecosystems and produce the bulk calories consumed by humans either directly in the form of grains or indirectly through forage/grain fed animals. In addition, grasses grown as biomass crops are poised to become a significant source of renewable energy. Despite their economic and environmental importance, research into the unique aspects of grass biology has been hampered by the lack of a truly tractable experimental model system. Over that past decade, the small, annual grass Brachypodium distachyon has emerged as a viable model system for the grasses. This book describes the development of extensive experimental resources (e.g. whole genome sequence, efficient transformation methods, insertional mutant collections, large germplasm collections, recombinant inbred lines, resequenced genomes) that have led many laboratories around the world to adopt B. distachyon as a model system. The use of B. distachyon to address a wide range of biological topics (e.g. disease resistance, cell wall composition, abiotic stress tolerance, root growth and development, floral development, natural diversity) is also discussed.

Book Genetic Data Analysis for Plant and Animal Breeding

Download or read book Genetic Data Analysis for Plant and Animal Breeding written by Fikret Isik and published by Springer. This book was released on 2017-09-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.

Book Preparing for Future Products of Biotechnology

Download or read book Preparing for Future Products of Biotechnology written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2017-07-28 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.

Book Genomics and Breeding for Climate Resilient Crops

Download or read book Genomics and Breeding for Climate Resilient Crops written by Chittaranjan Kole and published by Springer Science & Business Media. This book was released on 2013-06-18 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate change is expected to have a drastic impact on agronomic conditions including temperature, precipitation, soil nutrients, and the incidence of disease pests, to name a few. To face this looming threat, significant progress in developing new breeding strategies has been made over the last few decades. The first volume of Genomics and Breeding for Climate-Resilient Crops presents the basic concepts and strategies for developing climate-resilient crop varieties. Topics covered include: conservation, evaluation and utilization of biodiversity; identification of traits, genes and crops of the future; genomic and molecular tools; genetic engineering; participatory and evolutionary breeding; bioinformatics tools to support breeding; funding and networking support; and intellectual property, regulatory issues, social and political dimensions. ​

Book Genetics and Genomics of Setaria

Download or read book Genetics and Genomics of Setaria written by Andrew Doust and published by Springer. This book was released on 2016-12-19 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Setaria viridis and S.italica make up a model grass system to investigate C4 photosynthesis, cell wall biosynthesis, responses to drought, herbicide, and other environmental stressors, genome dynamics, developmental genetics and morphology, and interactions with microorganisms. Setaria viridis (green foxtail) is one of the world’s most widespread weeds, and its small size, native variation, rapidly burgeoning genetic and genomic resources, and transformability are making it the system of choice for both basic research and its translation into crop improvement. Its domesticated variant, S. italica (foxtail millet), is a drought-hardy cereal grown in China, India and Africa, and new breeding techniques show great potential for improving yields and nutrition for drought-prone regions. This book brings together for the first time evolutionary, genomic, genetic, and morphological analyses, together with protocols for growing and transforming Setaria, and approaches to high throughput genotyping and candidate gene analysis. Authors include major Setaria researchers from both the USA and overseas.

Book Molecular Dissection of Complex Traits

Download or read book Molecular Dissection of Complex Traits written by Andrew H. Paterson and published by CRC Press. This book was released on 2019-09-17 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past 10 years, contemporary geneticists using new molecular tools have been able to resolve complex traits into individual genetic components and describe each such component in detail. Molecular Dissection of Complex Traits summarizes the state of the art in molecular analysis of complex traits (QTL mapping), placing new developments in thi

Book The New Science of Metagenomics

Download or read book The New Science of Metagenomics written by National Research Council and published by National Academies Press. This book was released on 2007-06-24 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.

Book Abiotic Stress Mediated Sensing and Signaling in Plants  An Omics Perspective

Download or read book Abiotic Stress Mediated Sensing and Signaling in Plants An Omics Perspective written by Sajad Majeed Zargar and published by Springer. This book was released on 2018-02-20 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: The natural environment for plants is composed of a complex set of abiotic and biotic stresses; plant responses to these stresses are equally complex. Systems biology allows us to identify regulatory hubs in complex networks. It also examines the molecular “parts” (transcripts, proteins and metabolites) of an organism and attempts to combine them into functional networks or models that effectively describe and predict the dynamic activities of that organism in different environments. This book focuses on research advances regarding plant responses to abiotic stresses, from the physiological level to the molecular level. It highlights new insights gained from the integration of omics datasets and identifies remaining gaps in our knowledge, outlining additional focus areas for future crop improvement research. Plants have evolved a wide range of mechanisms for coping with various abiotic stresses. In many crop plants, the molecular mechanisms involved in a single type of stress tolerance have since been identified; however, in order to arrive at a holistic understanding of major and common events concerning abiotic stresses, the signaling pathways involved must also be elucidated. To date several molecules, like transcription factors and kinases, have been identified as promising candidates that are involved in crosstalk between stress signalling pathways. However, there is a need to better understand the tolerance mechanisms for different abiotic stresses by thoroughly grasping the signalling and sensing mechanisms involved. Accordingly, this book covers a range of topics, including the impacts of different abiotic stresses on plants, the molecular mechanisms leading to tolerance for different abiotic stresses, signaling cascades revealing cross-talk among various abiotic stresses, and elucidation of major candidate molecules that may provide abiotic stress tolerance in plants.