Download or read book Machine Learning for Data Streams written by Albert Bifet and published by MIT Press. This book was released on 2018-03-16 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
Download or read book Data Streams written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2007-04-03 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily discusses issues related to the mining aspects of data streams and it is unique in its primary focus on the subject. This volume covers mining aspects of data streams comprehensively: each contributed chapter contains a survey on the topic, the key ideas in the field for that particular topic, and future research directions. The book is intended for a professional audience composed of researchers and practitioners in industry. This book is also appropriate for advanced-level students in computer science.
Download or read book Data Streams written by S. Muthukrishnan and published by Now Publishers Inc. This book was released on 2005 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges.
Download or read book Learning from Data Streams written by João Gama and published by Springer Science & Business Media. This book was released on 2007-10-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.
Download or read book Knowledge Discovery from Data Streams written by Joao Gama and published by CRC Press. This book was released on 2010-05-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents
Download or read book Data Stream Management written by Minos Garofalakis and published by Springer. This book was released on 2016-07-11 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on the theory and practice of data stream management, and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains. A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processing algorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of streaming techniques in different domains (e.g., network management, financial analytics). Finally, the volume concludes with an overview of current data streaming products and new application domains (e.g. cloud computing, big data analytics, and complex event processing), and a discussion of future directions in this exciting field. The book provides a comprehensive overview of core concepts and technological foundations, as well as various systems and applications, and is of particular interest to students, lecturers and researchers in the area of data stream management.
Download or read book Streaming Data written by Andrew Psaltis and published by Simon and Schuster. This book was released on 2017-05-31 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Streaming Data introduces the concepts and requirements of streaming and real-time data systems. The book is an idea-rich tutorial that teaches you to think about how to efficiently interact with fast-flowing data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology As humans, we're constantly filtering and deciphering the information streaming toward us. In the same way, streaming data applications can accomplish amazing tasks like reading live location data to recommend nearby services, tracking faults with machinery in real time, and sending digital receipts before your customers leave the shop. Recent advances in streaming data technology and techniques make it possible for any developer to build these applications if they have the right mindset. This book will let you join them. About the Book Streaming Data is an idea-rich tutorial that teaches you to think about efficiently interacting with fast-flowing data. Through relevant examples and illustrated use cases, you'll explore designs for applications that read, analyze, share, and store streaming data. Along the way, you'll discover the roles of key technologies like Spark, Storm, Kafka, Flink, RabbitMQ, and more. This book offers the perfect balance between big-picture thinking and implementation details. What's Inside The right way to collect real-time data Architecting a streaming pipeline Analyzing the data Which technologies to use and when About the Reader Written for developers familiar with relational database concepts. No experience with streaming or real-time applications required. About the Author Andrew Psaltis is a software engineer focused on massively scalable real-time analytics. Table of Contents PART 1 - A NEW HOLISTIC APPROACH Introducing streaming data Getting data from clients: data ingestion Transporting the data from collection tier: decoupling the data pipeline Analyzing streaming data Algorithms for data analysis Storing the analyzed or collected data Making the data available Consumer device capabilities and limitations accessing the data PART 2 - TAKING IT REAL WORLD Analyzing Meetup RSVPs in real time
Download or read book Stream Data Management written by Nauman Chaudhry and published by Springer Science & Business Media. This book was released on 2005-04-14 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Researchers in data management have recently recognized the importance of a new class of data-intensive applications that requires managing data streams, i.e., data composed of continuous, real-time sequence of items. Streaming applications pose new and interesting challenges for data management systems. Such application domains require queries to be evaluated continuously as opposed to the one time evaluation of a query for traditional applications. Streaming data sets grow continuously and queries must be evaluated on such unbounded data sets. These, as well as other challenges, require a major rethink of almost all aspects of traditional database management systems to support streaming applications. Stream Data Management comprises eight invited chapters by researchers active in stream data management. The collected chapters provide exposition of algorithms, languages, as well as systems proposed and implemented for managing streaming data. Stream Data Management is designed to appeal to researchers or practitioners already involved in stream data management, as well as to those starting out in this area. This book is also suitable for graduate students in computer science interested in learning about stream data management.
Download or read book Streaming Systems written by Tyler Akidau and published by "O'Reilly Media, Inc.". This book was released on 2018-07-16 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra
Download or read book Taming The Big Data Tidal Wave written by Bill Franks and published by John Wiley & Sons. This book was released on 2012-03-19 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: You receive an e-mail. It contains an offer for a complete personal computer system. It seems like the retailer read your mind since you were exploring computers on their web site just a few hours prior.... As you drive to the store to buy the computer bundle, you get an offer for a discounted coffee from the coffee shop you are getting ready to drive past. It says that since you’re in the area, you can get 10% off if you stop by in the next 20 minutes.... As you drink your coffee, you receive an apology from the manufacturer of a product that you complained about yesterday on your Facebook page, as well as on the company’s web site.... Finally, once you get back home, you receive notice of a special armor upgrade available for purchase in your favorite online video game. It is just what is needed to get past some spots you’ve been struggling with.... Sound crazy? Are these things that can only happen in the distant future? No. All of these scenarios are possible today! Big data. Advanced analytics. Big data analytics. It seems you can’t escape such terms today. Everywhere you turn people are discussing, writing about, and promoting big data and advanced analytics. Well, you can now add this book to the discussion. What is real and what is hype? Such attention can lead one to the suspicion that perhaps the analysis of big data is something that is more hype than substance. While there has been a lot of hype over the past few years, the reality is that we are in a transformative era in terms of analytic capabilities and the leveraging of massive amounts of data. If you take the time to cut through the sometimes-over-zealous hype present in the media, you’ll find something very real and very powerful underneath it. With big data, the hype is driven by genuine excitement and anticipation of the business and consumer benefits that analyzing it will yield over time. Big data is the next wave of new data sources that will drive the next wave of analytic innovation in business, government, and academia. These innovations have the potential to radically change how organizations view their business. The analysis that big data enables will lead to decisions that are more informed and, in some cases, different from what they are today. It will yield insights that many can only dream about today. As you’ll see, there are many consistencies with the requirements to tame big data and what has always been needed to tame new data sources. However, the additional scale of big data necessitates utilizing the newest tools, technologies, methods, and processes. The old way of approaching analysis just won’t work. It is time to evolve the world of advanced analytics to the next level. That’s what this book is about. Taming the Big Data Tidal Wave isn’t just the title of this book, but rather an activity that will determine which businesses win and which lose in the next decade. By preparing and taking the initiative, organizations can ride the big data tidal wave to success rather than being pummeled underneath the crushing surf. What do you need to know and how do you prepare in order to start taming big data and generating exciting new analytics from it? Sit back, get comfortable, and prepare to find out!
Download or read book Scalable Data Streaming with Amazon Kinesis written by Tarik Makota and published by Packt Publishing Ltd. This book was released on 2021-03-31 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore Kinesis managed services such as Kinesis Data Streams, Kinesis Data Analytics, Kinesis Data Firehose, and Kinesis Video Streams with the help of practical use cases Key FeaturesGet well versed with the capabilities of Amazon KinesisExplore the monitoring, scaling, security, and deployment patterns of various Amazon Kinesis servicesLearn how other Amazon Web Services and third-party applications such as Splunk can be used as destinations for Kinesis dataBook Description Amazon Kinesis is a collection of secure, serverless, durable, and highly available purpose-built data streaming services. This data streaming service provides APIs and client SDKs that enable you to produce and consume data at scale. Scalable Data Streaming with Amazon Kinesis begins with a quick overview of the core concepts of data streams, along with the essentials of the AWS Kinesis landscape. You'll then explore the requirements of the use case shown through the book to help you get started and cover the key pain points encountered in the data stream life cycle. As you advance, you'll get to grips with the architectural components of Kinesis, understand how they are configured to build data pipelines, and delve into the applications that connect to them for consumption and processing. You'll also build a Kinesis data pipeline from scratch and learn how to implement and apply practical solutions. Moving on, you'll learn how to configure Kinesis on a cloud platform. Finally, you’ll learn how other AWS services can be integrated into Kinesis. These services include Redshift, Dynamo Database, AWS S3, Elastic Search, and third-party applications such as Splunk. By the end of this AWS book, you’ll be able to build and deploy your own Kinesis data pipelines with Kinesis Data Streams (KDS), Kinesis Data Firehose (KFH), Kinesis Video Streams (KVS), and Kinesis Data Analytics (KDA). What you will learnGet to grips with data streams, decoupled design, and real-time stream processingUnderstand the properties of KFH that differentiate it from other Kinesis servicesMonitor and scale KDS using CloudWatch metricsSecure KDA with identity and access management (IAM)Deploy KVS as infrastructure as code (IaC)Integrate services such as Redshift, Dynamo Database, and Splunk into KinesisWho this book is for This book is for solutions architects, developers, system administrators, data engineers, and data scientists looking to evaluate and choose the most performant, secure, scalable, and cost-effective data streaming technology to overcome their data ingestion and processing challenges on AWS. Prior knowledge of cloud architectures on AWS, data streaming technologies, and architectures is expected.
Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Download or read book Stream Data Processing A Quality of Service Perspective written by Sharma Chakravarthy and published by Springer Science & Business Media. This book was released on 2009-04-09 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The systems used to process data streams and provide for the needs of stream-based applications are Data Stream Management Systems (DSMSs). This book presents a new paradigm to meet the needs of these applications, including a detailed discussion of the techniques proposed. Ii includes important aspects of a QoS-driven DSMS (Data Stream Management System) and introduces applications where a DSMS can be used and discusses needs beyond the stream processing model. It also discusses in detail the design and implementation of MavStream. This volume is primarily intended as a reference book for researchers and advanced-level students in computer science. It is also appropriate for practitioners in industry who are interested in developing applications.
Download or read book Visualizing Streaming Data written by Anthony Aragues and published by "O'Reilly Media, Inc.". This book was released on 2018-06-01 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: While tools for analyzing streaming and real-time data are gaining adoption, the ability to visualize these data types has yet to catch up. Dashboards are good at conveying daily or weekly data trends at a glance, though capturing snapshots when data is transforming from moment to moment is more difficult—but not impossible. With this practical guide, application designers, data scientists, and system administrators will explore ways to create visualizations that bring context and a sense of time to streaming text data. Author Anthony Aragues guides you through the concepts and tools you need to build visualizations for analyzing data as it arrives. Determine your company’s goals for visualizing streaming data Identify key data sources and learn how to stream them Learn practical methods for processing streaming data Build a client application for interacting with events, logs, and records Explore common components for visualizing streaming data Consider analysis concepts for developing your visualization Define the dashboard’s layout, flow direction, and component movement Improve visualization quality and productivity through collaboration Explore use cases including security, IoT devices, and application data
Download or read book Architecting Angular Applications with Redux RxJS and NgRx written by Christoffer Noring and published by Packt Publishing Ltd. This book was released on 2018-03-26 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Managing the state of large-scale web applications is a highly challenging task with the need to align different components, backends, and web workers harmoniously. When it comes to Angular, you can use NgRx, which combines the simplicity of Redux with the reactive programming power of RxJS to build your application architecture, making your ...
Download or read book Adaptive Stream Mining written by Albert Bifet and published by IOS Press. This book was released on 2010 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a significant contribution to the subject of mining time-changing data streams and addresses the design of learning algorithms for this purpose. It introduces new contributions on several different aspects of the problem, identifying research opportunities and increasing the scope for applications. It also includes an in-depth study of stream mining and a theoretical analysis of proposed methods and algorithms. The first section is concerned with the use of an adaptive sliding window algorithm (ADWIN). Since this has rigorous performance guarantees, using it in place of counters or accumulators, it offers the possibility of extending such guarantees to learning and mining algorithms not initially designed for drifting data. Testing with several methods, including Naïve Bayes, clustering, decision trees and ensemble methods, is discussed as well. The second part of the book describes a formal study of connected acyclic graphs, or 'trees', from the point of view of closure-based mining, presenting efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. Lastly, a general methodology to identify closed patterns in a data stream is outlined. This is applied to develop an incremental method, a sliding-window based method, and a method that mines closed trees adaptively from data streams. These are used to introduce classification methods for tree data streams.
Download or read book Java I O written by Elliotte Rusty Harold and published by "O'Reilly Media, Inc.". This book was released on 2006-05-16 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: All of Java's Input/Output (I/O) facilities are based on streams, which provide simple ways to read and write data of different types. Java provides many different kinds of streams, each with its own application. The universe of streams is divided into four largecategories: input streams and output streams, for reading and writing binary data; and readers and writers, for reading and writing textual (character) data. You're almost certainly familiar with the basic kinds of streams--but did you know that there's a CipherInputStream for reading encrypted data? And a ZipOutputStream for automaticallycompressing data? Do you know how to use buffered streams effectively to make your I/O operations more efficient? Java I/O, 2nd Edition has been updated for Java 5.0 APIs and tells you all you ever need to know about streams--and probably more. A discussion of I/O wouldn't be complete without treatment of character sets and formatting. Java supports the Unicode standard, which provides definitions for the character sets of most written languages. Consequently, Java is the first programming language that lets you do I/O in virtually any language. Java also provides a sophisticated model for formatting textual and numeric data. Java I/O, 2nd Edition shows you how to control number formatting, use characters aside from the standard (but outdated) ASCII character set, and get a head start on writing truly multilingual software. Java I/O, 2nd Edition includes: Coverage of all I/O classes and related classes In-depth coverage of Java's number formatting facilities and its support for international character sets