Download or read book Data Science in Engineering Volume 10 written by Ramin Madarshahian and published by Springer Nature. This book was released on 2023-12-07 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science in Engineering, Volume 10: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Novel Data-driven Analysis Methods Deep Learning Gaussian Process Analysis Real-time Video-based Analysis Applications to Nonlinear Dynamics and Damage Detection High-rate Structural Monitoring and Prognostics
Download or read book Data Science in Engineering Vol 10 written by Thomas Matarazzo and published by Springer Nature. This book was released on with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Download or read book Doing Data Science written by Cathy O'Neil and published by "O'Reilly Media, Inc.". This book was released on 2013-10-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Download or read book Foundations of Data Science for Engineering Problem Solving written by Parikshit Narendra Mahalle and published by Springer Nature. This book was released on 2021-08-21 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is one-stop shop which offers essential information one must know and can implement in real-time business expansions to solve engineering problems in various disciplines. It will also help us to make future predictions and decisions using AI algorithms for engineering problems. Machine learning and optimizing techniques provide strong insights into novice users. In the era of big data, there is a need to deal with data science problems in multidisciplinary perspective. In the real world, data comes from various use cases, and there is a need of source specific data science models. Information is drawn from various platforms, channels, and sectors including web-based media, online business locales, medical services studies, and Internet. To understand the trends in the market, data science can take us through various scenarios. It takes help of artificial intelligence and machine learning techniques to design and optimize the algorithms. Big data modelling and visualization techniques of collected data play a vital role in the field of data science. This book targets the researchers from areas of artificial intelligence, machine learning, data science and big data analytics to look for new techniques in business analytics and applications of artificial intelligence in recent businesses.
Download or read book Big Data Cloud Computing Data Science Engineering written by Roger Lee and published by Springer. This book was released on 2018-08-13 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the outcomes of the 3rd IEEE/ACIS International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD 2018), which was held on July 10–12, 2018 in Kanazawa. The aim of the conference was to bring together researchers and scientists, businesspeople and entrepreneurs, teachers, engineers, computer users, and students to discuss the various fields of computer science, to share their experiences, and to exchange new ideas and information in a meaningful way. All aspects (theory, applications and tools) of computer and information science, the practical challenges encountered along the way, and the solutions adopted to solve them are all explored here. The conference organizers selected the best papers from among those accepted for presentation. The papers were chosen on the basis of review scores submitted by members of the program committee and subsequently underwent further rigorous review. Following this second round of review, 13 of the conference’s most promising papers were selected for this Springer (SCI) book. We eagerly await the important contributions that we know these authors will make to the field of computer and information science.
Download or read book Measurement and Data Analysis for Engineering and Science Third Edition written by Patrick F. Dunn and published by CRC Press. This book was released on 2014-05-23 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of Measurement and Data Analysis for Engineering and Science provides an up-to-date approach to presenting the methods of experimentation in science and engineering. Widely adopted by colleges and universities within the U.S. and abroad, this edition has been developed as a modular work to make it more adaptable to different approaches from various schools. This text details current methods and highlights the six fundamental tools required for implementation: planning an experiment, identifying measurement system components, assessing measurement system component performance, setting signal sampling conditions, analyzing experimental results, and reporting experimental results. What’s New in the Third Edition: This latest edition includes a new chapter order that presents a logical sequence of topics in experimentation, from the planning of an experiment to the reporting of the experimental results. It adds a new chapter on sensors and transducers that describes approximately 50 different sensors commonly used in engineering, presents uncertainty analysis in two separate chapters, and provides a problem topic summary in each chapter. New topics include smart measurement systems, focusing on the Arduino® microcontroller and its use in the wireless transmission of data, and MATLAB® and Simulink® programming for microcontrollers. Further topic additions are on the rejection of data outliers, light radiation, calibrations of sensors, comparison of first-order sensor responses, the voltage divider, determining an appropriate sample period, and planning a successful experiment. Measurement and Data Analysis for Engineering and Science also contains more than 100 solved example problems, over 400 homework problems, and provides over 75 MATLAB® Sidebars with accompanying MATLAB M-files, Arduino codes, and data files available for download.
Download or read book Machine Learning and Data Science written by Prateek Agrawal and published by John Wiley & Sons. This book was released on 2022-07-25 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.
Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
Download or read book Data Driven Farming written by Syed Nisar Hussain Bukhari and published by CRC Press. This book was released on 2024-06-13 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the dynamic realm of agriculture, artificial intelligence (AI) and machine learning (ML) emerge as catalysts for unprecedented transformation and growth. The emergence of big data, Internet of Things (IoT) sensors, and advanced analytics has opened up new possibilities for farmers to collect and analyze data in real-time, make informed decisions, and increase efficiency. AI and ML are key enablers of data-driven farming, allowing farmers to use algorithms and predictive models to gain insights into crop health, soil quality, weather patterns, and more. Agriculture is an industry that is deeply rooted in tradition, but the landscape is rapidly changing with the emergence of new technologies. Data-Driven Farming: Harnessing the Power of AI and Machine Learning in Agriculture is a comprehensive guide that explores how the latest advances in technology can help farmers make better decisions and maximize yields. It offers a detailed overview of the intersection of data, AI, and ML in agriculture and offers real-world examples and case studies that demonstrate how these tools can help farmers improve efficiency, reduce waste, and increase profitability. Exploring how AI and ML can be used to achieve sustainable and profitable farming practices, the book provides an introduction to the basics of data-driven farming, including an overview of the key concepts, tools, and technologies. It also discusses the challenges and opportunities facing farmers in today’s data-driven landscape. Covering such topics as crop monitoring, weather forecasting, pest management, and soil health management, the book focuses on analyzing data, predicting outcomes, and optimizing decision-making in a range of agricultural contexts.
Download or read book Intelligent Computing on IoT 2 0 Big Data Analytics and Block Chain Technology written by Mohammad S. Obaidat and published by CRC Press. This book was released on 2024-05-23 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is designed as a reference text and explores the concepts and techniques of IoT, artificial intelligence (AI), and blockchain. It also discusses the possibility of applying blockchain for providing security in various domains. The specific highlight of this book is focused on the application of integrated technologies in enhancing data models, better insights and discovery, intelligent predictions, smarter finance, smart retail, global verification, transparent governance, and innovative audit systems. The book discusses the potential of blockchain to significantly increase data while boosting accuracy and integrity in IoT-generated data and AI-processed information. It elucidates definitions, concepts, theories, and assumptions involved in smart contracts and distributed ledgers related to IoT systems and AI approaches. The book offers real-world uses of blockchain technologies in different IoT systems and further studies its influence in supply chains and logistics, the automotive industry, smart homes, the pharmaceutical industry, agriculture, and other areas. It also presents readers with ways of employing blockchain in IoT and AI, helping them to understand what they can and cannot do with blockchain. The book is aimed primarily at advanced undergraduates and graduates studying computer science, computer engineering, electrical engineering, information systems, computational sciences, artificial intelligence, and information technology. Researchers and professionals will also find this book very useful.
Download or read book Data Science and Big Data Analytics written by EMC Education Services and published by John Wiley & Sons. This book was released on 2015-01-05 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
Download or read book Data Smart written by John W. Foreman and published by John Wiley & Sons. This book was released on 2013-10-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
Download or read book Data Analytics Computational Statistics and Operations Research for Engineers written by Debabrata Samanta and published by CRC Press. This book was released on 2022-03-24 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapidly advancing fields of Data Analytics and Computational Statistics, it’s important to keep up with current trends, methodologies, and applications. This book investigates the role of data mining in computational statistics for machine learning. It offers applications that can be used in various domains and examines the role of transformation functions in optimizing problem statements. Data Analytics, Computational Statistics, and Operations Research for Engineers: Methodologies and Applications presents applications of computationally intensive methods, inference techniques, and survival analysis models. It discusses how data mining extracts information and how machine learning improves the computational model based on the new information. Those interested in this reference work will include students, professionals, and researchers working in the areas of data mining, computational statistics, operations research, and machine learning.
Download or read book Data Science From Research to Application written by Mahdi Bohlouli and published by Springer Nature. This book was released on 2020-01-28 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents outstanding theoretical and practical findings in data science and associated interdisciplinary areas. Its main goal is to explore how data science research can revolutionize society and industries in a positive way, drawing on pure research to do so. The topics covered range from pure data science to fake news detection, as well as Internet of Things in the context of Industry 4.0. Data science is a rapidly growing field and, as a profession, incorporates a wide variety of areas, from statistics, mathematics and machine learning, to applied big data analytics. According to Forbes magazine, “Data Science” was listed as LinkedIn’s fastest-growing job in 2017. This book presents selected papers from the International Conference on Contemporary Issues in Data Science (CiDaS 2019), a professional data science event that provided a real workshop (not “listen-shop”) where scientists and scholars had the chance to share ideas, form new collaborations, and brainstorm on major challenges; and where industry experts could catch up on emerging solutions to help solve their concrete data science problems. Given its scope, the book will benefit not only data scientists and scientists from other domains, but also industry experts, policymakers and politicians.
Download or read book Data Science and Data Analytics written by Amit Kumar Tyagi and published by CRC Press. This book was released on 2021-09-22 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured (labeled) and unstructured (unlabeled) data. It is the future of Artificial Intelligence (AI) and a necessity of the future to make things easier and more productive. In simple terms, data science is the discovery of data or uncovering hidden patterns (such as complex behaviors, trends, and inferences) from data. Moreover, Big Data analytics/data analytics are the analysis mechanisms used in data science by data scientists. Several tools, such as Hadoop, R, etc., are used to analyze this large amount of data to predict valuable information and for decision-making. Note that structured data can be easily analyzed by efficient (available) business intelligence tools, while most of the data (80% of data by 2020) is in an unstructured form that requires advanced analytics tools. But while analyzing this data, we face several concerns, such as complexity, scalability, privacy leaks, and trust issues. Data science helps us to extract meaningful information or insights from unstructured or complex or large amounts of data (available or stored virtually in the cloud). Data Science and Data Analytics: Opportunities and Challenges covers all possible areas, applications with arising serious concerns, and challenges in this emerging field in detail with a comparative analysis/taxonomy. FEATURES Gives the concept of data science, tools, and algorithms that exist for many useful applications Provides many challenges and opportunities in data science and data analytics that help researchers to identify research gaps or problems Identifies many areas and uses of data science in the smart era Applies data science to agriculture, healthcare, graph mining, education, security, etc. Academicians, data scientists, and stockbrokers from industry/business will find this book useful for designing optimal strategies to enhance their firm’s productivity.
Download or read book Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics written by Abhishek Kumar and published by CRC Press. This book was released on 2022-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, machine learning has developed dramatically and is still experiencing a fast and everlasting change in paradigms, methodology, applications and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on their diversity and complexity. Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques, providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design and interdisciplinary challenges. This book is useful for research scholars and students involved in critical condition analysis and computation models.