Download or read book Quantitative Social Science written by Kosuke Imai and published by Princeton University Press. This book was released on 2021-03-16 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
Download or read book Data Analysis for Social Science written by Elena Llaudet and published by Princeton University Press. This book was released on 2022-11-29 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Download or read book Big Data and Social Science written by Ian Foster and published by CRC Press. This book was released on 2016-08-10 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.
Download or read book Theory Based Data Analysis for the Social Sciences written by Carol S. Aneshensel and published by SAGE. This book was released on 2013 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.
Download or read book Data Analysis for the Social Sciences written by Douglas Bors and published by SAGE. This book was released on 2018-01-08 with total page 1115 pages. Available in PDF, EPUB and Kindle. Book excerpt: ′This book fosters in-depth understanding of the logic underpinning the most common statistical tests within the behavioural sciences. By emphasising the shared ground between these tests, the author provides crucial scaffolding for students as they embark upon their research journey.′ —Ruth Horry, Psychology, Swansea University ′This unique text presents the conceptual underpinnings of statistics as well as the computation and application of statistics to real-life situations--a combination rarely covered in one book. A must-have for students learning statistical techniques and a go-to handbook for experienced researchers.′ —Barbra Teater, Social Work, College of Staten Island, City University of New York Accessible, engaging, and informative, this book will help any social science student approach statistics with confidence. With a well-paced and well-judged integrated approach rather than a simple linear trajectory, this book progresses at a realistic speed that matches the pace at which statistics novices actually learn. Packed with global, interdisciplinary examples that ground statistical theory and concepts in real-world situations, it shows students not only how to apply newfound knowledge using IBM SPSS Statistics, but also why they would want to. Spanning statistics basics like variables, constants, and sampling through to t-tests, multiple regression and factor analysis, it builds statistical literacy while also covering key research principles like research questions, error types and results reliability. It shows you how to: Describe data with graphs, tables, and numbers Calculate probability and value distributions Test a priori and post hoc hypotheses Conduct Chi-squared tests and observational studies Structure ANOVA, ANCOVA, and factorial designs Supported by lots of visuals and a website with interactive demonstrations, author video, and practice datasets, this book is the student-focused companion to support students through their statistics journeys.
Download or read book Web Social Science written by Robert Ackland and published by SAGE. This book was released on 2013-06-17 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although written simply enough to be accessible to undergraduates, accomplished scholars are likely to appreciate it too. Reading it taught me quite a lot about a subject I thought I knew rather well. - Paul Vogt, Illinois State University "This book brings the art and science of building and applying innovative online research tools to students and faculty across the social sciences." - William H. Dutton, University of Oxford A comprehensive guide to the theory and practice of web Social Science. This book demonstrates how the web is being used to collect social research data, such as online surveys and interviews, as well as digital trace data from social media environments, such as Facebook and Twitter. It also illuminates how the advent of the web has led to traditional social science concepts and approaches being combined with those from other scientific disciplines, leading to new insights into social, political and economic behaviour. Situating social sciences in the digital age, this book aids: understanding of the fundamental changes to society, politics and the economy that have resulted from the advent of the web choice of appropriate data, tools and research methods for conducting research using web data learning how web data are providing new insights into long-standing social science research questions appreciation of how social science can facilitate an understanding of life in the digital age It is ideal for students and researchers across the social sciences, as well as those from information science, computer science and engineering who want to learn about how social scientists are thinking about and researching the web.
Download or read book Data Resources for the Social Sciences written by Lorraine Borman and published by . This book was released on 1974 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quantitative Social Science Data with R written by Brian J. Fogarty and published by SAGE. This book was released on 2018-11-24 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relevant, engaging, and packed with student-focused learning features, this book provides the basic step-by-step introduction to quantitative research and data every student needs.
Download or read book Big Data and Social Science written by Ian Foster and published by CRC Press. This book was released on 2020-11-17 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.
Download or read book Data Mining for the Social Sciences written by Paul Attewell and published by Univ of California Press. This book was released on 2015-05 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The amount of information collected on human behavior every day is staggering, and exponentially greater than at any time in the past. At the same time, we are inundated by stories of powerful algorithms capable of churning through this sea of data and uncovering patterns. These techniques go by many names - data mining, predictive analytics, machine learning - and they are being used by governments as they spy on citizens and by huge corporations are they fine-tune their advertising strategies. And yet social scientists continue mainly to employ a set of analytical tools developed in an earlier era when data was sparse and difficult to come by. In this timely book, Paul Attewell and David Monaghan provide a simple and accessible introduction to Data Mining geared towards social scientists. They discuss how the data mining approach differs substantially, and in some ways radically, from that of conventional statistical modeling familiar to most social scientists. They demystify data mining, describing the diverse set of techniques that the term covers and discussing the strengths and weaknesses of the various approaches. Finally they give practical demonstrations of how to carry out analyses using data mining tools in a number of statistical software packages. It is the hope of the authors that this book will empower social scientists to consider incorporating data mining methodologies in their analytical toolkits"--Provided by publisher.
Download or read book Text as Data written by Justin Grimmer and published by Princeton University Press. This book was released on 2022-03-29 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using text—representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides—computer science and social science, the qualitative and the quantitative, and industry and academia—Text as Data is an ideal resource for anyone wanting to analyze large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry
Download or read book Programming with Python for Social Scientists written by Phillip D. Brooker and published by SAGE. This book was released on 2019-12-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: As data become ′big′, fast and complex, the software and computing tools needed to manage and analyse them are rapidly developing. Social scientists need new tools to meet these challenges, tackle big datasets, while also developing a more nuanced understanding of - and control over - how these computing tools and algorithms are implemented. Programming with Python for Social Scientists offers a vital foundation to one of the most popular programming tools in computer science, specifically for social science researchers, assuming no prior coding knowledge. It guides you through the full research process, from question to publication, including: the fundamentals of why and how to do your own programming in social scientific research, questions of ethics and research design, a clear, easy to follow ′how-to′ guide to using Python, with a wide array of applications such as data visualisation, social media data research, social network analysis, and more. Accompanied by numerous code examples, screenshots, sample data sources, this is the textbook for social scientists looking for a complete introduction to programming with Python and incorporating it into their research design and analysis.
Download or read book Applied Statistics Using Stata written by Mehmet Mehmetoglu and published by SAGE. This book was released on 2022-04-26 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Straightforward, clear, and applied, this book will give you the theoretical and practical basis you need to apply data analysis techniques to real data. Combining key statistical concepts with detailed technical advice, it addresses common themes and problems presented by real research, and shows you how to adjust your techniques and apply your statistical knowledge to a range of datasets. It also embeds code and software output throughout and is supported by online resources to enable practice and safe experimentation. The book includes: · Original case studies and data sets · Practical exercises and lists of commands for each chapter · Downloadable Stata programmes created to work alongside chapters · A wide range of detailed applications using Stata · Step-by-step guidance on writing the relevant code. This is the perfect text for anyone doing statistical research in the social sciences getting started using Stata for data analysis.
Download or read book Adventures in Social Research written by Earl R. Babbie and published by Pine Forge Press. This book was released on 2011 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Click on the Supplements tab above for further details on the different versions of SPSS programs.
Download or read book Social Science Research written by Anol Bhattacherjee and published by CreateSpace. This book was released on 2012-04-01 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.
Download or read book The SAGE Encyclopedia of Social Science Research Methods written by Michael Lewis-Beck and published by SAGE. This book was released on 2004 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring over 900 entries, this resource covers all disciplines within the social sciences with both concise definitions & in-depth essays.
Download or read book Transparent and Reproducible Social Science Research written by Garret Christensen and published by University of California Press. This book was released on 2019-07-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, social science has had numerous episodes of influential research that was found invalid when placed under rigorous scrutiny. The growing sense that many published results are potentially erroneous has made those conducting social science research more determined to ensure the underlying research is sound. Transparent and Reproducible Social Science Research is the first book to summarize and synthesize new approaches to combat false positives and non-reproducible findings in social science research, document the underlying problems in research practices, and teach a new generation of students and scholars how to overcome them. Understanding that social science research has real consequences for individuals when used by professionals in public policy, health, law enforcement, and other fields, the book crystallizes new insights, practices, and methods that help ensure greater research transparency, openness, and reproducibility. Readers are guided through well-known problems and are encouraged to work through new solutions and practices to improve the openness of their research. Created with both experienced and novice researchers in mind, Transparent and Reproducible Social Science Research serves as an indispensable resource for the production of high quality social science research.