EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Mining Using SAS Enterprise Miner

Download or read book Data Mining Using SAS Enterprise Miner written by Randall Matignon and published by John Wiley & Sons. This book was released on 2007-08-03 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike.

Book Predictive Modeling with SAS Enterprise Miner

Download or read book Predictive Modeling with SAS Enterprise Miner written by Kattamuri S. Sarma and published by SAS Institute. This book was released on 2017-07-20 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: « Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. »--

Book Decision Trees for Business Intelligence and Data Mining

Download or read book Decision Trees for Business Intelligence and Data Mining written by Barry De Ville and published by SAS Press. This book was released on 2006 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This example-driven guide illustrates the application and operation of decision trees in data mining, business intelligence, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements other business intelligence applications.

Book Text Mining and Analysis

    Book Details:
  • Author : Dr. Goutam Chakraborty
  • Publisher : SAS Institute
  • Release : 2014-11-22
  • ISBN : 1612907873
  • Pages : 340 pages

Download or read book Text Mining and Analysis written by Dr. Goutam Chakraborty and published by SAS Institute. This book was released on 2014-11-22 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.

Book Handbook of Statistical Analysis and Data Mining Applications

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Book Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner

Download or read book Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner written by Olivia Parr-Rud and published by SAS Institute. This book was released on 2014-10 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. This beginnner's guide with clear, illustrated, step-by-step instructions will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. --

Book Customer Segmentation and Clustering Using SAS Enterprise Miner  Third Edition

Download or read book Customer Segmentation and Clustering Using SAS Enterprise Miner Third Edition written by Randall S. Collica and published by SAS Institute. This book was released on 2017-03-23 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Résumé : A working guide that uses real-world data, this step-by-step resource will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. --

Book Decision Trees for Analytics Using SAS Enterprise Miner

Download or read book Decision Trees for Analytics Using SAS Enterprise Miner written by Barry De Ville and published by . This book was released on 2019-07-03 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision Trees for Analytics Using SAS Enterprise Miner is the most comprehensive treatment of decision tree theory, use, and applications available in one easy-to-access place. This book illustrates the application and operation of decision trees in business intelligence, data mining, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements data mining approaches such as regression, as well as other business intelligence applications that incorporate tabular reports, OLAP, or multidimensional cubes. An expanded and enhanced release of Decision Trees for Business Intelligence and Data Mining Using SAS Enterprise Miner, this book adds up-to-date treatments of boosting and high-performance forest approaches and rule induction. There is a dedicated section on the most recent findings related to bias reduction in variable selection. It provides an exhaustive treatment of the end-to-end process of decision tree construction and the respective considerations and algorithms, and it includes discussions of key issues in decision tree practice. Analysts who have an introductory understanding of data mining and who are looking for a more advanced, in-depth look at the theory and methods of a decision tree approach to business intelligence and data mining will benefit from this book.

Book Data Mining Using SAS Enterprise Miner

Download or read book Data Mining Using SAS Enterprise Miner written by SAS Institute and published by Sas Inst. This book was released on 2003 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CRM Segmentation and Clustering Using SAS Enterprise Miner

Download or read book CRM Segmentation and Clustering Using SAS Enterprise Miner written by Randall S. Collica and published by SAS Press. This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the customer is critical to your company's success. In this instructive guide, Randy Collica employs SAS Enterprise Miner and the most commonly available techniques for customer relationship management (CRM). You will learn how to segment customers more intelligently and to achieve, or at least get closer to, the one-to-one customer relationship that today's businesses want. Step-by-step examples and exercises clearly illustrate the concepts of segmentation and clustering in the context of CRM. The book, with a foreword by Michael J. A. Berry, is sectioned into three parts. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics such as when and how to update your models and clustering with many attributes. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner software.This straight-forward guide will appeal to anyone who seeks to better understand customers or prospective customers. Additionally, professors and students will find the book well suited for a business data mining analytics course in an MBA program or related course of study. You should understand basic statistics, but no prior knowledge of data mining or SAS Enterprise Miner is required. Included on your bonus CD-ROM are the following: example SAS code, data sets, macros, and Enterprise Miner templates.

Book Simulating Data with SAS

Download or read book Simulating Data with SAS written by Rick Wicklin and published by SAS Institute. This book was released on 2013 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program.

Book Data Preparation for Analytics Using SAS

Download or read book Data Preparation for Analytics Using SAS written by Gerhard Svolba and published by SAS Institute. This book was released on 2006-11-27 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for anyone involved in the data preparation process for analytics, Gerhard Svolba's Data Preparation for Analytics Using SAS offers practical advice in the form of SAS coding tips and tricks, and provides the reader with a conceptual background on data structures and considerations from a business point of view. The tasks addressed include viewing analytic data preparation in the context of its business environment, identifying the specifics of predictive modeling for data mart creation, understanding the concepts and considerations of data preparation for time series analysis, using various SAS procedures and SAS Enterprise Miner for scoring, creating meaningful derived variables for all data mart types, using powerful SAS macros to make changes among the various data mart structures, and more!

Book Applying Predictive Analytics

Download or read book Applying Predictive Analytics written by Richard V. McCarthy and published by Springer. This book was released on 2019-03-12 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes.

Book Applied Data Mining for Forecasting Using SAS

Download or read book Applied Data Mining for Forecasting Using SAS written by Tim Rey and published by SAS Institute. This book was released on 2012-07 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Data Mining for Forecasting Using SAS, by Tim Rey, Arthur Kordon, and Chip Wells, introduces and describes approaches for mining large time series data sets. Written for forecasting practitioners, engineers, statisticians, and economists, the book details how to select useful candidate input variables for time series regression models in environments when the number of candidates is large, and identifies the correlation structure between selected candidate inputs and the forecast variable. This book is essential for forecasting practitioners who need to understand the practical issues involved in applied forecasting in a business setting. Through numerous real-world examples, the authors demonstrate how to effectively use SAS software to meet their industrial forecasting needs.

Book Data Mining Using SAS Enterprise Miner

Download or read book Data Mining Using SAS Enterprise Miner written by Randall Matignon and published by John Wiley & Sons. This book was released on 2007-08-13 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike.

Book Analyzing Receiver Operating Characteristic Curves with SAS

Download or read book Analyzing Receiver Operating Characteristic Curves with SAS written by Mithat Gonen and published by SAS Press. This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a diagnostic decision-making tool, receiver operating characteristic (ROC) curves provide a comprehensive and visually attractive way to summarize the accuracy of predictions. They are used extensively in medical diagnosis and increasingly in fields such as data mining, credit scoring, weather forecasting, and psychometry. In Analyzing Receiver Operating Characteristic Curves with SAS, author Mithat Gonen illustrates the many existing SAS procedures that can be tailored to produce ROC curves and expands upon further analyses using other SAS procedures and macros. Both parametric and nonparametric methods for analyzing ROC curves are covered in detail. Topics addressed include: Appropriate methods for binary, ordinal, and continuous measures Computations using PROC FREQ, PROC LOGISTIC, PROC NLMIXED, and macros Comparing the ROC curves of several markers and adjusting them for covariates ROC curves with censored data Using the ROC curve for evaluating multivariable prediction models via bootstrap and cross-validation ROC curves in SAS Enterprise Miner And more! Written for any statistician interested in learning more about ROC curve methodology, the book assumes readers have a basic understanding of regression procedures and moderate familiarity with Base SAS and SAS/STAT. Some familiarity with SAS/GRAPH is helpful but not essential. This book is part of the SAS Press program.

Book Data Quality for Analytics Using SAS

Download or read book Data Quality for Analytics Using SAS written by Gerhard Svolba and published by SAS Institute. This book was released on 2012-04-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytics offers many capabilities and options to measure and improve data quality, and SAS is perfectly suited to these tasks. Gerhard Svolba's Data Quality for Analytics Using SAS focuses on selecting the right data sources and ensuring data quantity, relevancy, and completeness. The book is made up of three parts. The first part, which is conceptual, defines data quality and contains text, definitions, explanations, and examples. The second part shows how the data quality status can be profiled and the ways that data quality can be improved with analytical methods. The final part details the consequences of poor data quality for predictive modeling and time series forecasting. With this book you will learn how you can use SAS to perform advanced profiling of data quality status and how SAS can help improve your data quality. This book is part of the SAS Press program.