Download or read book Data Mining and Reverse Engineering written by Stefano Spaccapietra and published by Springer. This book was released on 2013-03-14 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Searching for Semantics: Data Mining, Reverse Engineering Stefano Spaccapietra Fred M aryanski Swiss Federal Institute of Technology University of Connecticut Lausanne, Switzerland Storrs, CT, USA REVIEW AND FUTURE DIRECTIONS In the last few years, database semantics research has turned sharply from a highly theoretical domain to one with more focus on practical aspects. The DS- 7 Working Conference held in October 1997 in Leysin, Switzerland, demon strated the more pragmatic orientation of the current generation of leading researchers. The papers presented at the meeting emphasized the two major areas: the discovery of semantics and semantic data modeling. The work in the latter category indicates that although object-oriented database management systems have emerged as commercially viable prod ucts, many fundamental modeling issues require further investigation. Today's object-oriented systems provide the capability to describe complex objects and include techniques for mapping from a relational database to objects. However, we must further explore the expression of information regarding the dimensions of time and space. Semantic models possess the richness to describe systems containing spatial and temporal data. The challenge of in corporating these features in a manner that promotes efficient manipulation by the subject specialist still requires extensive development.
Download or read book Data Mining and Reverse Engineering written by Stefano Spaccapietra and published by Springer. This book was released on 1998-04-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Searching for Semantics: Data Mining, Reverse Engineering Stefano Spaccapietra Fred M aryanski Swiss Federal Institute of Technology University of Connecticut Lausanne, Switzerland Storrs, CT, USA REVIEW AND FUTURE DIRECTIONS In the last few years, database semantics research has turned sharply from a highly theoretical domain to one with more focus on practical aspects. The DS- 7 Working Conference held in October 1997 in Leysin, Switzerland, demon strated the more pragmatic orientation of the current generation of leading researchers. The papers presented at the meeting emphasized the two major areas: the discovery of semantics and semantic data modeling. The work in the latter category indicates that although object-oriented database management systems have emerged as commercially viable prod ucts, many fundamental modeling issues require further investigation. Today's object-oriented systems provide the capability to describe complex objects and include techniques for mapping from a relational database to objects. However, we must further explore the expression of information regarding the dimensions of time and space. Semantic models possess the richness to describe systems containing spatial and temporal data. The challenge of in corporating these features in a manner that promotes efficient manipulation by the subject specialist still requires extensive development.
Download or read book Evolutionary Computation Machine Learning and Data Mining in Bioinformatics written by Elena Marchiori and published by Springer. This book was released on 2007-06-21 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2007, held in Valencia, Spain, April 2007. Coverage brings together experts in computer science with experts in bioinformatics and the biological sciences. It presents contributions on fundamental and theoretical issues along with papers dealing with different applications areas.
Download or read book Evolutionary Computation Machine Learning and Data Mining in Bioinformatics written by Clara Pizzuti and published by Springer Science & Business Media. This book was released on 2011-04-19 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2011, held in Torino, Italy, in April 2011 co-located with the Evo* 2011 events. The 12 revised full papers presented together with 7 poster papers were carefully reviewed and selected from numerous submissions. All papers included topics of interest such as biomarker discovery, cell simulation and modeling, ecological modeling, fluxomics, gene networks, biotechnology, metabolomics, microarray analysis, phylogenetics, protein interactions, proteomics, sequence analysis and alignment, and systems biology.
Download or read book Evolutionary Computation Machine Learning and Data Mining in Bioinformatics written by Elena Marchiori and published by Springer Science & Business Media. This book was released on 2007-04-02 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2007, held in Valencia, Spain, April 2007. Coverage brings together experts in computer science with experts in bioinformatics and the biological sciences. It presents contributions on fundamental and theoretical issues along with papers dealing with different applications areas.
Download or read book Machine Learning and Data Mining in Pattern Recognition written by Petra Perner and published by Springer. This book was released on 2017-07-01 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 13th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2017, held in New York, NY, USA in July/August 2017.The 31 full papers presented in this book were carefully reviewed and selected from 150 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multi-media data types such as image mining, text mining, video mining, and Web mining.
Download or read book Evolutionary Computation Machine Learning and Data Mining in Bioinformatics written by Mario Giacobini and published by Springer Science & Business Media. This book was released on 2012-03-28 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 10th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2012, held in Málaga, Spain, in April 2012 co-located with the Evo* 2012 events. The 15 revised full papers presented together with 8 poster papers were carefully reviewed and selected from numerous submissions. Computational Biology is a wide and varied discipline, incorporating aspects of statistical analysis, data structure and algorithm design, machine learning, and mathematical modeling toward the processing and improved understanding of biological data. Experimentalists now routinely generate new information on such a massive scale that the techniques of computer science are needed to establish any meaningful result. As a consequence, biologists now face the challenges of algorithmic complexity and tractability, and combinatorial explosion when conducting even basic analyses.
Download or read book Data Mining written by Mehmed Kantardzic and published by John Wiley & Sons. This book was released on 2019-11-12 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author—a noted expert on the topic—explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: • Explores big data and cloud computing • Examines deep learning • Includes information on convolutional neural networks (CNN) • Offers reinforcement learning • Contains semi-supervised learning and S3VM • Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field.
Download or read book Nature Inspired Computation in Data Mining and Machine Learning written by Xin-She Yang and published by Springer Nature. This book was released on 2019-09-03 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the latest developments in nature-inspired computation, with a focus on the cross-disciplinary applications in data mining and machine learning. Data mining, machine learning and nature-inspired computation are current hot research topics due to their importance in both theory and practical applications. Adopting an application-focused approach, each chapter introduces a specific topic, with detailed descriptions of relevant algorithms, extensive literature reviews and implementation details. Covering topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, feature selection, cybersecurity, learning algorithms over cloud, extreme learning machines, object categorization, particle swarm optimization, flower pollination and firefly algorithms, and neural networks, it also presents case studies and applications, including classifications of crisis-related tweets, extraction of named entities in the Tamil language, performance-based prediction of diseases, and healthcare services. This book is both a valuable a reference resource and a practical guide for students, researchers and professionals in computer science, data and management sciences, artificial intelligence and machine learning.
Download or read book The Decision Maker s Handbook to Data Science written by Stylianos Kampakis and published by Apress. This book was released on 2019-11-26 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. It is easy for novices to the subject to feel paralyzed by intimidating buzzwords, but what many don’t realize is that data science is in fact quite multidisciplinary—useful in the hands of business analysts, communications strategists, designers, and more. With the second edition of The Decision Maker’s Handbook to Data Science, you will learn how to think like a veteran data scientist and approach solutions to business problems in an entirely new way. Author Stylianos Kampakis provides you with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issues surrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated and revised second edition, includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. What You Will Learn Understand how data science can be used within your business. Recognize the differences between AI, machine learning, and statistics.Become skilled at thinking like a data scientist, without being one.Discover how to hire and manage data scientists.Comprehend how to build the right environment in order to make your organization data-driven. Who This Book Is For Startup founders, product managers, higher level managers, and any other non-technical decision makers who are thinking to implement data science in their organization and hire data scientists. A secondary audience includes people looking for a soft introduction into the subject of data science.
Download or read book Applications of Supply Chain Management and E Commerce Research written by Joseph Geunes and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: In February 2002, the Industrial and Systems Engineering (ISE) De partment at the University of Florida hosted a National Science Founda tion Workshop on Collaboration and Negotiation in Supply Chain Man agement and E Commerce. This workshop focused on characterizing the challenges facing leading edge firms in supply chain management and electronic commerce, and identifying research opportunities for de veloping new technological and decision support capabilities sought by industry. The audience included practitioners in the areas of supply chain management and E Commerce, as well as academic researchers working in these areas. The workshop provided a unique setting that has facilitated ongoing dialog between academic researchers and industry practitioners. This book codifies many of the important themes and issues around which the workshop discussions centered. The editors of this book, all faculty members in the ISE Department at the University of Florida, also served as the workshop's coordinators. In addition to workshop participants, we also invited contributions from leading academics and practitioners who were not able to attend. As a result, the chapters herein represent a collection of research contributions, monographs, and case studies from a variety of disciplines and viewpoints. On the aca demic side alone, chapter authors include faculty members in supply chain and operations management, marketing, industrial engineering, economics, computer science, civil and environmental engineering, and building construction departments.
Download or read book Data Science for Entrepreneurship written by Werner Liebregts and published by Springer Nature. This book was released on 2023-03-23 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fast-paced technological development and the plethora of data create numerous opportunities waiting to be exploited by entrepreneurs. This book provides a detailed, yet practical, introduction to the fundamental principles of data science and how entrepreneurs and would-be entrepreneurs can take advantage of it. It walks the reader through sections on data engineering, and data analytics as well as sections on data entrepreneurship and data use in relation to society. The book also offers ways to close the research and practice gaps between data science and entrepreneurship. By having read this book, students of entrepreneurship courses will be better able to commercialize data-driven ideas that may be solutions to real-life problems. Chapters contain detailed examples and cases for a better understanding. Discussion points or questions at the end of each chapter help to deeply reflect on the learning material.
Download or read book Reverse Engineering the Mind written by Florian Neukart and published by Springer. This book was released on 2016-10-24 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Florian Neukart describes methods for interpreting signals in the human brain in combination with state of the art AI, allowing for the creation of artificial conscious entities (ACE). Key methods are to establish a symbiotic relationship between a biological brain, sensors, AI and quantum hard- and software, resulting in solutions for the continuous consciousness-problem as well as other state of the art problems. The research conducted by the author attracts considerable attention, as there is a deep urge for people to understand what advanced technology means in terms of the future of mankind. This work marks the beginning of a journey – the journey towards machines with conscious action and artificially accelerated human evolution.
Download or read book Data Mining and Big Data written by Ying Tan and published by Springer Nature. This book was released on with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Analysis of Microarray Data written by Matthias Dehmer and published by John Wiley & Sons. This book was released on 2008-09-08 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first to focus on the application of mathematical networks for analyzing microarray data. This method goes well beyond the standard clustering methods traditionally used. From the contents: * Understanding and Preprocessing Microarray Data * Clustering of Microarray Data * Reconstruction of the Yeast Cell Cycle by Partial Correlations of Higher Order * Bilayer Verification Algorithm * Probabilistic Boolean Networks as Models for Gene Regulation * Estimating Transcriptional Regulatory Networks by a Bayesian Network * Analysis of Therapeutic Compound Effects * Statistical Methods for Inference of Genetic Networks and Regulatory Modules * Identification of Genetic Networks by Structural Equations * Predicting Functional Modules Using Microarray and Protein Interaction Data * Integrating Results from Literature Mining and Microarray Experiments to Infer Gene Networks The book is for both, scientists using the technique as well as those developing new analysis techniques.
Download or read book Handbook on Decision Making written by Julian Andres Zapata-Cortes and published by Springer Nature. This book was released on 2022-09-26 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents different techniques and methodologies used to improve the intelligent decision-making process and increase the likelihood of success in companies of different sectors such as Financial Services, Education, Supply Chain, Energy Systems, Health Services, and others. The book contains and consolidates innovative and high-quality research contributions regarding the implementation of techniques and methodologies applied in different sectors. The scope is to disseminate current trends knowledge in the implementation of artificial intelligence techniques and methodologies in different fields such as: Logistics, Software Development, Big Data, Internet of Things, Simulation, among others. The book contents are useful for Ph.D. researchers, Ph.D. students, master and undergraduate students of different areas such as Industrial Engineering, Computer Science, Information Systems, Data Analytics, and others.
Download or read book Data Management Analytics and Innovation written by Saptarsi Goswami and published by Springer Nature. This book was released on 2022-09-21 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence, and data analytics, along with advances in network technologies. The book is a collection of peer-reviewed research papers presented at Sixth International Conference on Data Management, Analytics and Innovation (ICDMAI 2022), held virtually during January 14–16, 2022. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.