EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Matching

    Book Details:
  • Author : Peter Christen
  • Publisher : Springer Science & Business Media
  • Release : 2012-07-04
  • ISBN : 3642311644
  • Pages : 279 pages

Download or read book Data Matching written by Peter Christen and published by Springer Science & Business Media. This book was released on 2012-07-04 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.

Book Data Centric Safety

Download or read book Data Centric Safety written by Alastair Faulkner and published by Elsevier. This book was released on 2020-05-27 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-Centric Safety presents core concepts and principles of system safety management, and then guides the reader through the application of these techniques and measures to Data-Centric Systems (DCS). The authors have compiled their decades of experience in industry and academia to provide guidance on the management of safety risk. Data Safety has become increasingly important as many solutions depend on data for their correct and safe operation and assurance. The book's content covers the definition and use of data. It recognises that data is frequently used as the basis of operational decisions and that DCS are often used to reduce user oversight. This data is often invisible, hidden. DCS analysis is based on a Data Safety Model (DSM). The DSM provides the basis for a toolkit leading to improvement recommendations. It also discusses operation and oversight of DCS and the organisations that use them. The content covers incident management, providing an outline for incident response. Incident investigation is explored to address evidence collection and management.Current standards do not adequately address how to manage data (and the errors it may contain) and this leads to incidents, possibly loss of life. The DSM toolset is based on Interface Agreements to create soft boundaries to help engineers facilitate proportionate analysis, rationalisation and management of data safety. Data-Centric Safety is ideal for engineers who are working in the field of data safety management.This book will help developers and safety engineers to: - Determine what data can be used in safety systems, and what it can be used for - Verify that the data being used is appropriate and has the right characteristics, illustrated through a set of application areas - Engineer their systems to ensure they are robust to data errors and failures

Book Database Design and Implementation

Download or read book Database Design and Implementation written by Edward Sciore and published by Springer Nature. This book was released on 2020-02-27 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook examines database systems from the viewpoint of a software developer. This perspective makes it possible to investigate why database systems are the way they are. It is of course important to be able to write queries, but it is equally important to know how they are processed. We e.g. don’t want to just use JDBC; we also want to know why the API contains the classes and methods that it does. We need a sense of how hard is it to write a disk cache or logging facility. And what exactly is a database driver, anyway? The first two chapters provide a brief overview of database systems and their use. Chapter 1 discusses the purpose and features of a database system and introduces the Derby and SimpleDB systems. Chapter 2 explains how to write a database application using Java. It presents the basics of JDBC, which is the fundamental API for Java programs that interact with a database. In turn, Chapters 3-11 examine the internals of a typical database engine. Each chapter covers a different database component, starting with the lowest level of abstraction (the disk and file manager) and ending with the highest (the JDBC client interface); further, the respective chapter explains the main issues concerning the component, and considers possible design decisions. As a result, the reader can see exactly what services each component provides and how it interacts with the other components in the system. By the end of this part, s/he will have witnessed the gradual development of a simple but completely functional system. The remaining four chapters then focus on efficient query processing, and focus on the sophisticated techniques and algorithms that can replace the simple design choices described earlier. Topics include indexing, sorting, intelligent buffer usage, and query optimization. This text is intended for upper-level undergraduate or beginning graduate courses in Computer Science. It assumes that the reader is comfortable with basic Java programming; advanced Java concepts (such as RMI and JDBC) are fully explained in the text. The respective chapters are complemented by “end-of-chapter readings” that discuss interesting ideas and research directions that went unmentioned in the text, and provide references to relevant web pages, research articles, reference manuals, and books. Conceptual and programming exercises are also included at the end of each chapter. Students can apply their conceptual knowledge by examining the SimpleDB (a simple but fully functional database system created by the author and provided online) code and modifying it.

Book CCNP Data Center Application Centric Infrastructure 300 620 DCACI Official Cert Guide

Download or read book CCNP Data Center Application Centric Infrastructure 300 620 DCACI Official Cert Guide written by Ammar Ahmadi and published by Cisco Press. This book was released on 2021-01-21 with total page 1287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trust the best-selling Official Cert Guide series from Cisco Press to help you learn, prepare, and practice for exam success. They are built with the objective of providing assessment, review, and practice to help ensure you are fully prepared for your certification exam. * Master CCNP Data Center Application Centric Infrastructure DCACI 300-620 exam topics * Assess your knowledge with chapter-opening quizzes * Review key concepts with exam preparation tasks This is the eBook edition of the CCNP Data Center Application Centric Infrastructure DCACI 300-620 Official Cert Guide. This eBook does not include access to the companion website with practice exam that comes with the print edition. CCNP Data Center Application Centric Infrastructure DCACI 300-620 Official Cert Guide presents you with an organized test-preparation routine through the use of proven series elements and techniques. “Do I Know This Already?” quizzes open each chapter and enable you to decide how much time you need to spend on each section. Exam topic lists make referencing easy. Chapter-ending Exam Preparation Tasks help you drill on key concepts you must know thoroughly. CCNP Data Center Application Centric Infrastructure DCACI 300-620 Official Cert Guide focuses specifically on the objectives for the CCNP Data Center DCACI exam. Leading Cisco data center technology expert Ammar Ahmadi shares preparation hints and test-taking tips, helping you identify areas of weakness and improve both your conceptual knowledge and hands-on skills. Material is presented in a concise manner, focusing on increasing your understanding and retention of exam topics. Well regarded for its level of detail, assessment features, comprehensive design scenarios, and challenging review questions and exercises, this official study guide helps you master the concepts and techniques that will enable you to succeed on the exam the first time. This official study guide helps you master all the topics on the CCNP Data Center Application Centric Infrastructure DCACI 300-620 exam. It tests your knowledge of Cisco switches in ACI mode, including • ACI fabric infrastructure • ACI packet forwarding • External network connectivity • Integrations • ACI management • ACI Anywhere CCNP Data Center Application Centric Infrastructure DCACI 300-620 Official Cert Guide is part of a recommended learning path from Cisco that includes simulation and hands-on training from authorized Cisco Learning Partners and self-study products from Cisco Press. To find out more about instructor-led training, e-learning, and hands-on instruction offered by authorized Cisco Learning Partners worldwide, please visit http://www.cisco.com/web/learning/index.html

Book Data Centric Artificial Intelligence  A Beginner   s Guide

Download or read book Data Centric Artificial Intelligence A Beginner s Guide written by Parikshit N. Mahalle and published by Springer Nature. This book was released on 2023-11-11 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the best research roadmaps, strategies, and challenges in data-centric approach of artificial intelligence (AI) in various domains. It presents comparative studies of model-centric and data-centric AI. It also highlights different phases in data-centric approach and data-centric principles. The book presents prominent use cases of data-centric AI. It serves as a reference guide for researchers and practitioners in academia and industry.

Book SQL for Data Science

    Book Details:
  • Author : Antonio Badia
  • Publisher : Springer Nature
  • Release : 2020-11-09
  • ISBN : 3030575926
  • Pages : 290 pages

Download or read book SQL for Data Science written by Antonio Badia and published by Springer Nature. This book was released on 2020-11-09 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explains SQL within the context of data science and introduces the different parts of SQL as they are needed for the tasks usually carried out during data analysis. Using the framework of the data life cycle, it focuses on the steps that are very often given the short shift in traditional textbooks, like data loading, cleaning and pre-processing. The book is organized as follows. Chapter 1 describes the data life cycle, i.e. the sequence of stages from data acquisition to archiving, that data goes through as it is prepared and then actually analyzed, together with the different activities that take place at each stage. Chapter 2 gets into databases proper, explaining how relational databases organize data. Non-traditional data, like XML and text, are also covered. Chapter 3 introduces SQL queries, but unlike traditional textbooks, queries and their parts are described around typical data analysis tasks like data exploration, cleaning and transformation. Chapter 4 introduces some basic techniques for data analysis and shows how SQL can be used for some simple analyses without too much complication. Chapter 5 introduces additional SQL constructs that are important in a variety of situations and thus completes the coverage of SQL queries. Lastly, chapter 6 briefly explains how to use SQL from within R and from within Python programs. It focuses on how these languages can interact with a database, and how what has been learned about SQL can be leveraged to make life easier when using R or Python. All chapters contain a lot of examples and exercises on the way, and readers are encouraged to install the two open-source database systems (MySQL and Postgres) that are used throughout the book in order to practice and work on the exercises, because simply reading the book is much less useful than actually using it. This book is for anyone interested in data science and/or databases. It just demands a bit of computer fluency, but no specific background on databases or data analysis. All concepts are introduced intuitively and with a minimum of specialized jargon. After going through this book, readers should be able to profitably learn more about data mining, machine learning, and database management from more advanced textbooks and courses.

Book Data Centric Business and Applications

Download or read book Data Centric Business and Applications written by Peter Štarchoň and published by Springer Nature. This book was released on with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Era of Artificial Intelligence

Download or read book Era of Artificial Intelligence written by Rik Das and published by CRC Press. This book was released on 2023-07-10 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text has attempted to collate quality research articles ranging from A Mathematical Disposition for Neural Nets, to Cognitive Computing, to Quantum Machine Learning, to a Multimodal Emotion Recognition System, to Responsible AI, to AI for Accessibility and Inclusion, to Artificial-Enabled Intelligence Enabled Applications in the sectors of Health, Pharma and Education. Features Focus on AI research and interdisciplinary research that exhibits AI inclusion to a greater degree Focus on application of disruptive technology in the context of the twenty-first century human and machine approach Focus on role of disruptive technology such as cognitive computing, quantum machine learning, IOT enabled-recognition systems Focus on unravelling the powerful features of artificial intelligence for societal benefits including accessibility This volume will cater as a ready reference to an individual’s quest for deep diving into the ocean of artificial intelligence-enabled solution approaches. The book will serve as a useful reference for researchers, innovators, academicians, entrepreneurs, and professionals aspiring to gain expertise in the domain of cognitive and quantum computing, IOT-enabled intelligent systems and so on.

Book Data Science and Analytics Strategy

Download or read book Data Science and Analytics Strategy written by Kailash Awati and published by CRC Press. This book was released on 2023-04-05 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes how to establish data science and analytics capabilities in organisations using Emergent Design, an evolutionary approach that increases the chances of successful outcomes while minimising upfront investment. Based on their experiences and those of a number of data leaders, the authors provide actionable advice on data technologies, processes, and governance structures so that readers can make choices that are appropriate to their organisational contexts and requirements. The book blends academic research on organisational change and data science processes with real-world stories from experienced data analytics leaders, focusing on the practical aspects of setting up a data capability. In addition to a detailed coverage of capability, culture, and technology choices, a unique feature of the book is its treatment of emerging issues such as data ethics and algorithmic fairness. Data Science and Analytics Strategy: An Emergent Design Approach has been written for professionals who are looking to build data science and analytics capabilities within their organisations as well as those who wish to expand their knowledge and advance their careers in the data space. Providing deep insights into the intersection between data science and business, this guide will help professionals understand how to help their organisations reap the benefits offered by data. Most importantly, readers will learn how to build a fit-for-purpose data science capability in a manner that avoids the most common pitfalls.

Book OECD Skills Studies OECD Skills Strategy Luxembourg Assessment and Recommendations

Download or read book OECD Skills Studies OECD Skills Strategy Luxembourg Assessment and Recommendations written by OECD and published by OECD Publishing. This book was released on 2023-02-23 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Skills are the key to shaping a better future and central to the capacity of countries and people to thrive in an increasingly interconnected and rapidly changing world. This report, OECD Skills Strategy Luxembourg: Assessment and Recommendations, identifies opportunities and makes recommendations to provide labour-market relevant adult learning opportunities, guide and incentivise skills choices, attract and retain foreign talent to fill skills shortages, and strengthen the governance of skills data in Luxembourg.

Book Data Centric AI Solutions and Emerging Technologies in the Healthcare Ecosystem

Download or read book Data Centric AI Solutions and Emerging Technologies in the Healthcare Ecosystem written by Alex Khang and published by CRC Press. This book was released on 2023-10-09 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers insight into the healthcare system by exploring emerging technologies and AI-based applications and implementation strategies. It includes current developments for future directions as well as covering the concept of the healthcare system along with its ecosystem. Data-Centric AI Solutions and Emerging Technologies in the Healthcare Ecosystem focuses on the mechanisms of proposing and incorporating solutions along with architectural concepts, design principles, smart solutions, decision-making process, and intelligent predictions. It offers state-of-the-art approaches for overall innovations, developments, and implementation of the smart healthcare ecosystem and highlights medical signal and image processing algorithms, healthcare-based computer vision systems, and discusses explainable AI (XAI) techniques for healthcare. This book will be useful to researchers involved in AI, IoT, Data, and emerging technologies in the medical industry. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.

Book Azure Data Scientist Associate Certification Guide

Download or read book Azure Data Scientist Associate Certification Guide written by Andreas Botsikas and published by Packt Publishing Ltd. This book was released on 2021-12-03 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develop the skills you need to run machine learning workloads in Azure and pass the DP-100 exam with ease Key FeaturesCreate end-to-end machine learning training pipelines, with or without codeTrack experiment progress using the cloud-based MLflow-compatible process of Azure ML servicesOperationalize your machine learning models by creating batch and real-time endpointsBook Description The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam. What you will learnCreate a working environment for data science workloads on AzureRun data experiments using Azure Machine Learning servicesCreate training and inference pipelines using the designer or codeDiscover the best model for your dataset using Automated MLUse hyperparameter tuning to optimize trained modelsDeploy, use, and monitor models in productionInterpret the predictions of a trained modelWho this book is for This book is for developers who want to infuse their applications with AI capabilities and data scientists looking to scale their machine learning experiments in the Azure cloud. Basic knowledge of Python is needed to follow the code samples used in the book. Some experience in training machine learning models in Python using common frameworks like scikit-learn will help you understand the content more easily.

Book Software Wasteland

Download or read book Software Wasteland written by Dave McComb and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Know what's causing application development waste so you can turn the tide. This is the book your Systems Integrator and your Application Software vendor don't want you to read. Enterprise IT (Information Technology) is a $3.8 trillion per year industry worldwide. Most of it is waste. We've grown used to projects costing tens of millions or even billions of dollars, and routinely running over budget and schedule many times over. These overages in both time and money are almost all wasted resources. However, the waste is hard to see, after being so marbled through all the products, processes, and guiding principles. That is what this book is about. We must see, understand, and agree about the problem before we can take coordinated action to address it. The trajectory of this book is as follows: In Chapter 1, we explore how bad the current state is. The three industries that address software waste are discussed, including the legacy software industry, neo-legacy software industry, and legacy modernization industry. Examples of application waste are illustrated from both public and private sectors. In Chapter 2, we explore the economics of the software industry. Although the economic tradeoffs are changing at the speed of Moore's Law, our approaches are not keeping pace. Learn how information systems really behave in terms of actual application development. In Chapter 3 we use "root cause analysis" to reveal the real contributors to this situation, which are dependency, redundancy, complexity, and application centricity. Chapter 4 recounts the many failed attempts we've made in the past to deal with information system complexity, including relational databases, ERP systems, enterprise data modeling, service oriented architectures, and APIs, Agile, data warehouse and business intelligence, outsourcing and offshoring, cloud, Software as a Service (SaaS), data lakes, machine learning, and artificial intelligence. Chapter 5 dismantles seven fallacies that contribute to our remaining stuck. For example, the first fallacy is "We need detailed requirements or we won't get what we want." The quagmire is not affecting all sectors of the economy equally. Chapter 6 looks at how this is playing out in the government and private sectors, large and small companies, and various parts of the IT industry itself. Chapter 7 outlines some action you can take now to begin to extricate yourself, including a detailed assessment and defining metrics for measuring and preventing software development waste.

Book Encyclopedia of Data Science and Machine Learning

Download or read book Encyclopedia of Data Science and Machine Learning written by Wang, John and published by IGI Global. This book was released on 2023-01-20 with total page 3296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.

Book Designing Data Intensive Applications

Download or read book Designing Data Intensive Applications written by Martin Kleppmann and published by "O'Reilly Media, Inc.". This book was released on 2017-03-16 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures

Book Data Management for Researchers

Download or read book Data Management for Researchers written by Kristin Briney and published by Pelagic Publishing Ltd. This book was released on 2015-09-01 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin

Book Information and Communication Technology and Applications

Download or read book Information and Communication Technology and Applications written by Sanjay Misra and published by Springer Nature. This book was released on 2021-02-13 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised selected papers from the Third International Conference on Information and Communication Technology and Applications, ICTA 2020, held in Minna, Nigeria, in November 2020. Due to the COVID-19 pandemic the conference was held online. The 67 full papers were carefully reviewed and selected from 234 submissions. The papers are organized in the topical sections on Artificial Intelligence, Big Data and Machine Learning; Information Security Privacy and Trust; Information Science and Technology.