Download or read book The Data Book written by Meredith Zozus and published by CRC Press. This book was released on 2017-07-12 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Data Book: Collection and Management of Research Data is the first practical book written for researchers and research team members covering how to collect and manage data for research. The book covers basic types of data and fundamentals of how data grow, move and change over time. Focusing on pre-publication data collection and handling, the text illustrates use of these key concepts to match data collection and management methods to a particular study, in essence, making good decisions about data. The first section of the book defines data, introduces fundamental types of data that bear on methodology to collect and manage them, and covers data management planning and research reproducibility. The second section covers basic principles of and options for data collection and processing emphasizing error resistance and traceability. The third section focuses on managing the data collection and processing stages of research such that quality is consistent and ultimately capable of supporting conclusions drawn from data. The final section of the book covers principles of data security, sharing, and archival. This book will help graduate students and researchers systematically identify and implement appropriate data collection and handling methods.
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Download or read book Dear Data written by Giorgia Lupi and published by Chronicle Books. This book was released on 2016-09-13 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Equal parts mail art, data visualization, and affectionate correspondence, Dear Data celebrates "the infinitesimal, incomplete, imperfect, yet exquisitely human details of life," in the words of Maria Popova (Brain Pickings), who introduces this charming and graphically powerful book. For one year, Giorgia Lupi, an Italian living in New York, and Stefanie Posavec, an American in London, mapped the particulars of their daily lives as a series of hand-drawn postcards they exchanged via mail weekly—small portraits as full of emotion as they are data, both mundane and magical. Dear Data reproduces in pinpoint detail the full year's set of cards, front and back, providing a remarkable portrait of two artists connected by their attention to the details of their lives—including complaints, distractions, phone addictions, physical contact, and desires. These details illuminate the lives of two remarkable young women and also inspire us to map our own lives, including specific suggestions on what data to draw and how. A captivating and unique book for designers, artists, correspondents, friends, and lovers everywhere.
Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Download or read book Tally O Malley written by Stuart J. Murphy and published by Harper Collins. This book was released on 2004-09 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: The O'Malleys are off to the beach! But it's a long, hot, boring drive. What can Eric, Bridget, and Nell do to keep busy? Play tally games, of course -- counting up all the gray cars or green T-shirts they see. Whoever has the most marks at the end wins the game. Eric wins the first game. Bridget wins the second. It seems like poor Nell will never win a game! But Nell has the luck of the Irish on her side, and a surprise in store for her big brother and sister.
Download or read book Data Smart written by John W. Foreman and published by John Wiley & Sons. This book was released on 2013-10-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
Download or read book Business unIntelligence written by Barry Devlin and published by . This book was released on 2013-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business intelligence (BI) used to be so simple—in theory anyway. Integrate and copy data from your transactional systems into a specialized relational database, apply BI reporting and query tools and add business users. Job done. No longer. Analytics, big data and an array of diverse technologies have changed everything. More importantly, business is insisting on ever more value, ever faster from information and from IT in general. An emerging biz-tech ecosystem demands that business and IT work together. Business unIntelligence reflects the new reality that in today’s socially complex and rapidly changing world, business decisions must be based on a combination of rational and intuitive thinking. Integrating cues from diverse information sources and tacit knowledge, decision makers create unique meaning to innovate heuristically at the speed of thought. This book provides a wealth of new models that business and IT can use together to design support systems for tomorrow’s successful organizations. Dr. Barry Devlin, one of the earliest proponents of data warehousing, goes back to basics to explore how the modern trinity of information, process and people must be reinvented and restructured to deliver the value, insight and innovation required by modern businesses. From here, he develops a series of novel architectural models that provide a new foundation for holistic information use across the entire business. From discovery to analysis and from decision making to action taking, he defines a fully integrated, closed-loop business environment. Covering every aspect of business analytics, big data, collaborative working and more, this book takes over where BI ends to deliver the definitive framework for information use in the coming years. As the person who defined the conceptual framework and physical architecture for data warehousing in the 1980s, Barry Devlin has been an astute observer of the movement he initiated ever since. Now, in Business unIntelligence, Devlin provides a sweeping view of the past, present, and future of business intelligence, while delivering new conceptual and physical models for how to turn information into insights and action. Reading Devlin’s prose and vision of BI are comparable to reading Carl Sagan’s view of the cosmos. The book is truly illuminating and inspiring. --Wayne Eckerson, President, BI Leader Consulting Author, “Secrets of Analytical Leaders: Insights from Information Insiders”
Download or read book Big Data written by Viktor Mayer-Schönberger and published by Houghton Mifflin Harcourt. This book was released on 2013 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.
Download or read book Storytelling with Data written by Cole Nussbaumer Knaflic and published by John Wiley & Sons. This book was released on 2015-10-09 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
Download or read book Driven by Data written by Paul Bambrick-Santoyo and published by John Wiley & Sons. This book was released on 2010-04-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a practical guide for improving schools dramatically that will enable all students from all backgrounds to achieve at high levels. Includes assessment forms, an index, and a DVD.
Download or read book State Data Book written by United States. Rehabilitation Services Administration. Division of Monitoring and Program Analysis. Statistical Analysis and Systems Branch and published by . This book was released on 1972 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Great Graph Contest written by Loreen Leedy and published by National Geographic Books. This book was released on 2006-09-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn everything about graphs, charts, and how to organize information in this fun picture book introduction. Follow two comical creatures as they go graph-crazy! Gonk the frog and his friend Chester have all kinds of questions-- do more of their friends like mud, or not? Who has the biggest feet? What color butterfly is most common? In order to answer these questions, the two friends make all kinds of charts-- and so can you! This funny look at graphs and charts introduces several major ways of organizing information-- bar graphs, pie charts, Venn diagrams, and more. With concrete, easy-to-understand examples and bright, cartoonish illustrations, The Great Graph Contest is a kid-friendly introduction to the basics of data visualization that will have you itching to make your own graphs! An author's note expands on the different kinds of charts pictured in the story, and instructions on making your own graphs and charts are included.
Download or read book Street Data written by Shane Safir and published by Corwin. This book was released on 2021-02-12 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radically reimagine our ways of being, learning, and doing Education can be transformed if we eradicate our fixation on big data like standardized test scores as the supreme measure of equity and learning. Instead of the focus being on "fixing" and "filling" academic gaps, we must envision and rebuild the system from the student up—with classrooms, schools and systems built around students’ brilliance, cultural wealth, and intellectual potential. Street data reminds us that what is measurable is not the same as what is valuable and that data can be humanizing, liberatory and healing. By breaking down street data fundamentals: what it is, how to gather it, and how it can complement other forms of data to guide a school or district’s equity journey, Safir and Dugan offer an actionable framework for school transformation. Written for educators and policymakers, this book · Offers fresh ideas and innovative tools to apply immediately · Provides an asset-based model to help educators look for what’s right in our students and communities instead of seeking what’s wrong · Explores a different application of data, from its capacity to help us diagnose root causes of inequity, to its potential to transform learning, and its power to reshape adult culture Now is the time to take an antiracist stance, interrogate our assumptions about knowledge, measurement, and what really matters when it comes to educating young people.
Download or read book Science Data Book written by Ralph. M. Tennent and published by . This book was released on 1971 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Feminism written by Catherine D'Ignazio and published by MIT Press. This book was released on 2020-03-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.
Download or read book The Book of Alternative Data written by Alexander Denev and published by John Wiley & Sons. This book was released on 2020-07-21 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.
Download or read book Democratizing Our Data written by Julia Lane and published by MIT Press. This book was released on 2021-10-19 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wake-up call for America to create a new framework for democratizing data. Public data are foundational to our democratic system. People need consistently high-quality information from trustworthy sources. In the new economy, wealth is generated by access to data; government's job is to democratize the data playing field. Yet data produced by the American government are getting worse and costing more. In Democratizing Our Data, Julia Lane argues that good data are essential for democracy. Her book is a wake-up call to America to fix its broken public data system.