EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Analysis Fundamentals Certificate

Download or read book Data Analysis Fundamentals Certificate written by AICPA and published by Wiley. This book was released on 2020-03-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Data Analysis Fundamentals Certificate (10.0 CPE Credits) provides you with the knowledge on the different job roles involved in the analytics practice and the most commonly encountered technologies in today's data ecosystem. This certificate is Part 1 of the Data Analyst Certificates Bundle - a comprehensive five-part program that provides training and practical guidance on the topic of data analytics. The Data Analysis Fundamentals Certificate begins with a foundational understanding of the need of transformational assets within an organization and explains the importance of intelligent data management and corresponding analytics practice. This certificate program aims to provide you with the knowledge on the different job roles involved in the analytics practice and the most commonly encountered technologies in today's data ecosystem. It will cover concepts behind the most common types of data you will need to be prepared to analyze, as well as help you explore the factors impacting data practice. This certificate program will also explain why intelligent data management and a corresponding analytics practice is critical for the success of both the organization and the professional. WHO WILL BENEFIT Accounting and finance professionals, especially those interested in learning and applying data analysis techniques to help their organizations' make informed, data-driven business decisions. KEY TOPICS The business impacts and disruptive potential of organizational data Basic concepts behind different types of data and how they're used The job roles and duties associated with data analytics The life cycle of organizational data and how to manage it A vocabulary for evaluating and communicating in data practice Exposure to and demonstrations of tools used for managing and analyzing data Common obstacles and hurdles to effectively leveraging data in an organization How to tie data to business requirements and build business cases LEARNING OBJECTIVES Determine how the digital transformation and disruption landscape create a competitive advantage across the enterprise. Identify the organizational ecosystem needed for becoming a data-driven organization. Analyze the life cycle of data and its implications for data-driven decision making. Compare common problems and risks associated with becoming a data-driven business. Differentiate between data analysis tools. Identify requirements for data-driven projects. Digital Badge: Your Professional Distinction Set yourself apart as a future-ready financial professional. Upon completion, you will be awarded with a certificate in the form of a digital badge. Digital badges allow you to distinguish yourself in the marketplace and show your commitment to quality. The badge can be posted to your social media profiles and linked to your resume or email signature, providing maximum visibility to your achievement. Credit Info CPE CREDITS: Online: 10.0 (CPE credit info) NASBA FIELD OF STUDY: Specialized Knowledge LEVEL: Basic PREREQUISITES: None ADVANCE PREPARATION: None DELIVERY METHOD: QAS Self-Study COURSE ACRONYM: DALP-S1 Online Access Instructions A personal pin code is enclosed in the physical packaging that may be activated online upon receipt. Once activated, you will gain immediate online access to the product for one full year. System Requirements AICPA’s online CPE courses will operate in a variety of configurations, but only the configuration described below is supported by AICPA technicians. A stable and continuous internet connection is required. In order to record your completion of the online learning courses, please ensure you are connected to the internet at all times while taking the course. It is your responsibility to validate that CPE certificate(s) are available within your account after successfully completing the course and/or exam. Supported Operating Systems: Macintosh OS X 10.10 to present Windows 7 to present Supported Browsers: Apple Safari Google Chrome Microsoft Internet Explorer Mozilla Firefox Required Browser Plug-ins: Adobe Flash Adobe Acrobat Reader Technical Support: Please contact [email protected].

Book Microsoft Excel 2019 Data Analysis and Business Modeling

Download or read book Microsoft Excel 2019 Data Analysis and Business Modeling written by Wayne Winston and published by Microsoft Press. This book was released on 2019-03-28 with total page 1490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master business modeling and analysis techniques with Microsoft Excel 2019 and Office 365 and transform data into bottom-line results. Written by award-winning educator Wayne Winston, this hands-on, scenario-focused guide helps you use Excel to ask the right questions and get accurate, actionable answers. New coverage ranges from Power Query/Get & Transform to Office 365 Geography and Stock data types. Practice with more than 800 problems, many based on actual challenges faced by working analysts. Solve real business problems with Excel—and build your competitive advantage: Quickly transition from Excel basics to sophisticated analytics Use PowerQuery or Get & Transform to connect, combine, and refine data sources Leverage Office 365’s new Geography and Stock data types and six new functions Illuminate insights from geographic and temporal data with 3D Maps Summarize data with pivot tables, descriptive statistics, histograms, and Pareto charts Use Excel trend curves, multiple regression, and exponential smoothing Delve into key financial, statistical, and time functions Master all of Excel’s great charts Quickly create forecasts from historical time-based data Use Solver to optimize product mix, logistics, work schedules, and investments—and even rate sports teams Run Monte Carlo simulations on stock prices and bidding models Learn about basic probability and Bayes’ Theorem Use the Data Model and Power Pivot to effectively build and use relational data sources inside an Excel workbook Automate repetitive analytics tasks by using macros

Book Introduction to Data Science

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Book AWS Certified Data Analytics Study Guide with Online Labs

Download or read book AWS Certified Data Analytics Study Guide with Online Labs written by Asif Abbasi and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Virtual, hands-on learning labs allow you to apply your technical skills in realistic environments. So Sybex has bundled AWS labs from XtremeLabs with our popular AWS Certified Data Analytics Study Guide to give you the same experience working in these labs as you prepare for the Certified Data Analytics Exam that you would face in a real-life application. These labs in addition to the book are a proven way to prepare for the certification and for work as an AWS Data Analyst. AWS Certified Data Analytics Study Guide: Specialty (DAS-C01) Exam is intended for individuals who perform in a data analytics-focused role. This UPDATED exam validates an examinee's comprehensive understanding of using AWS services to design, build, secure, and maintain analytics solutions that provide insight from data. It assesses an examinee's ability to define AWS data analytics services and understand how they integrate with each other; and explain how AWS data analytics services fit in the data lifecycle of collection, storage, processing, and visualization. The book focuses on the following domains: • Collection • Storage and Data Management • Processing • Analysis and Visualization • Data Security This is your opportunity to take the next step in your career by expanding and validating your skills on the AWS cloud. AWS is the frontrunner in cloud computing products and services, and the AWS Certified Data Analytics Study Guide: Specialty exam will get you fully prepared through expert content, and real-world knowledge, key exam essentials, chapter review questions, and much more. Written by an AWS subject-matter expert, this study guide covers exam concepts, and provides key review on exam topics. Readers will also have access to Sybex's superior online interactive learning environment and test bank, including chapter tests, practice exams, a glossary of key terms, and electronic flashcards. And included with this version of the book, XtremeLabs virtual labs that run from your browser. The registration code is included with the book and gives you 6 months of unlimited access to XtremeLabs AWS Certified Data Analytics Labs with 3 unique lab modules based on the book.

Book Python for Finance

    Book Details:
  • Author : Yves Hilpisch
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2018-12-05
  • ISBN : 1492024295
  • Pages : 720 pages

Download or read book Python for Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.

Book Handbook of Data Analysis

Download or read book Handbook of Data Analysis written by Melissa A Hardy and published by SAGE. This book was released on 2009-06-17 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: ′This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond′ - Environment and Planning ′The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University ′With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa ′This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis.

Book Foundations of Data Science

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Book Statistics and Data Analysis for Financial Engineering

Download or read book Statistics and Data Analysis for Financial Engineering written by David Ruppert and published by Springer. This book was released on 2015-04-21 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.

Book Data Analytics Basics

Download or read book Data Analytics Basics written by Simplilearn and published by IndraStra Whitepapers. This book was released on 2020-12-14 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data analytics is increasingly becoming a key element in shaping a company’s business strategy. Today, data influences every decision made by an organization, and this is driving the wide-scale adoption of data analytics, including machine learning technologies and artificial intelligence solutions. The heightened focus is propelling a surge in data analytics spending, reflected in various studies conducted by leading market research firms. The field of data analytics offers some amazing salaries and is not only the hottest IT job, but it is also one of the best-paying jobs in the world. This guide aims at providing the readers with everything they need to know about the data analytics field, basic terminologies, key concepts, real-life use cases, skills you must master in order to scale up your career, and training and certifications you might need to reach your dream job.

Book Data Analysis for Social Science

Download or read book Data Analysis for Social Science written by Elena Llaudet and published by Princeton University Press. This book was released on 2022-11-29 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--

Book Data Science for Undergraduates

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2018-11-11
  • ISBN : 0309475597
  • Pages : 139 pages

Download or read book Data Science for Undergraduates written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-11-11 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.

Book Doing Data Science

    Book Details:
  • Author : Cathy O'Neil
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2013-10-09
  • ISBN : 144936389X
  • Pages : 320 pages

Download or read book Doing Data Science written by Cathy O'Neil and published by "O'Reilly Media, Inc.". This book was released on 2013-10-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Book Executive Data Science

Download or read book Executive Data Science written by Roger Peng and published by . This book was released on 2016-08-03 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this concise book you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You'll get a crash course in data science so that you'll be conversant in the field and understand your role as a leader. You'll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You'll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you'll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects.

Book Storytelling with Data

    Book Details:
  • Author : Cole Nussbaumer Knaflic
  • Publisher : John Wiley & Sons
  • Release : 2015-10-09
  • ISBN : 1119002265
  • Pages : 284 pages

Download or read book Storytelling with Data written by Cole Nussbaumer Knaflic and published by John Wiley & Sons. This book was released on 2015-10-09 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!

Book Become a Python Data Analyst

Download or read book Become a Python Data Analyst written by Alvaro Fuentes and published by Packt Publishing Ltd. This book was released on 2018-08-31 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhance your data analysis and predictive modeling skills using popular Python tools Key Features Cover all fundamental libraries for operation and manipulation of Python for data analysis Implement real-world datasets to perform predictive analytics with Python Access modern data analysis techniques and detailed code with scikit-learn and SciPy Book Description Python is one of the most common and popular languages preferred by leading data analysts and statisticians for working with massive datasets and complex data visualizations. Become a Python Data Analyst introduces Python’s most essential tools and libraries necessary to work with the data analysis process, right from preparing data to performing simple statistical analyses and creating meaningful data visualizations. In this book, we will cover Python libraries such as NumPy, pandas, matplotlib, seaborn, SciPy, and scikit-learn, and apply them in practical data analysis and statistics examples. As you make your way through the chapters, you will learn to efficiently use the Jupyter Notebook to operate and manipulate data using NumPy and the pandas library. In the concluding chapters, you will gain experience in building simple predictive models and carrying out statistical computation and analysis using rich Python tools and proven data analysis techniques. By the end of this book, you will have hands-on experience performing data analysis with Python. What you will learn Explore important Python libraries and learn to install Anaconda distribution Understand the basics of NumPy Produce informative and useful visualizations for analyzing data Perform common statistical calculations Build predictive models and understand the principles of predictive analytics Who this book is for Become a Python Data Analyst is for entry-level data analysts, data engineers, and BI professionals who want to make complete use of Python tools for performing efficient data analysis. Prior knowledge of Python programming is necessary to understand the concepts covered in this book

Book Process Mining

    Book Details:
  • Author : Wil M. P. van der Aalst
  • Publisher : Springer
  • Release : 2016-04-15
  • ISBN : 3662498510
  • Pages : 477 pages

Download or read book Process Mining written by Wil M. P. van der Aalst and published by Springer. This book was released on 2016-04-15 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.

Book Deep Learning for Coders with fastai and PyTorch

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala