EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cyber Security Meets Machine Learning

Download or read book Cyber Security Meets Machine Learning written by Xiaofeng Chen and published by Springer Nature. This book was released on 2021-07-02 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning boosts the capabilities of security solutions in the modern cyber environment. However, there are also security concerns associated with machine learning models and approaches: the vulnerability of machine learning models to adversarial attacks is a fatal flaw in the artificial intelligence technologies, and the privacy of the data used in the training and testing periods is also causing increasing concern among users. This book reviews the latest research in the area, including effective applications of machine learning methods in cybersecurity solutions and the urgent security risks related to the machine learning models. The book is divided into three parts: Cyber Security Based on Machine Learning; Security in Machine Learning Methods and Systems; and Security and Privacy in Outsourced Machine Learning. Addressing hot topics in cybersecurity and written by leading researchers in the field, the book features self-contained chapters to allow readers to select topics that are relevant to their needs. It is a valuable resource for all those interested in cybersecurity and robust machine learning, including graduate students and academic and industrial researchers, wanting to gain insights into cutting-edge research topics, as well as related tools and inspiring innovations.

Book Machine Learning for Cybersecurity Cookbook

Download or read book Machine Learning for Cybersecurity Cookbook written by Emmanuel Tsukerman and published by Packt Publishing Ltd. This book was released on 2019-11-25 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply modern AI to create powerful cybersecurity solutions for malware, pentesting, social engineering, data privacy, and intrusion detection Key FeaturesManage data of varying complexity to protect your system using the Python ecosystemApply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineeringAutomate your daily workflow by addressing various security challenges using the recipes covered in the bookBook Description Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach. What you will learnLearn how to build malware classifiers to detect suspicious activitiesApply ML to generate custom malware to pentest your securityUse ML algorithms with complex datasets to implement cybersecurity conceptsCreate neural networks to identify fake videos and imagesSecure your organization from one of the most popular threats – insider threatsDefend against zero-day threats by constructing an anomaly detection systemDetect web vulnerabilities effectively by combining Metasploit and MLUnderstand how to train a model without exposing the training dataWho this book is for This book is for cybersecurity professionals and security researchers who are looking to implement the latest machine learning techniques to boost computer security, and gain insights into securing an organization using red and blue team ML. This recipe-based book will also be useful for data scientists and machine learning developers who want to experiment with smart techniques in the cybersecurity domain. Working knowledge of Python programming and familiarity with cybersecurity fundamentals will help you get the most out of this book.

Book Hands On Machine Learning for Cybersecurity

Download or read book Hands On Machine Learning for Cybersecurity written by Soma Halder and published by Packt Publishing Ltd. This book was released on 2018-12-31 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get into the world of smart data security using machine learning algorithms and Python libraries Key FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learnUse machine learning algorithms with complex datasets to implement cybersecurity conceptsImplement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problemsLearn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDAUnderstand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimesUse TensorFlow in the cybersecurity domain and implement real-world examplesLearn how machine learning and Python can be used in complex cyber issuesWho this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book

Book Machine Learning and Security

Download or read book Machine Learning and Security written by Clarence Chio and published by "O'Reilly Media, Inc.". This book was released on 2018-01-26 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions

Book Game Theory and Machine Learning for Cyber Security

Download or read book Game Theory and Machine Learning for Cyber Security written by Charles A. Kamhoua and published by John Wiley & Sons. This book was released on 2021-09-08 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.

Book Data Mining and Machine Learning in Cybersecurity

Download or read book Data Mining and Machine Learning in Cybersecurity written by Sumeet Dua and published by CRC Press. This book was released on 2016-04-19 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapid advancement of information discovery techniques, machine learning and data mining continue to play a significant role in cybersecurity. Although several conferences, workshops, and journals focus on the fragmented research topics in this area, there has been no single interdisciplinary resource on past and current works and possible

Book Implications of Artificial Intelligence for Cybersecurity

Download or read book Implications of Artificial Intelligence for Cybersecurity written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-01-27 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, interest and progress in the area of artificial intelligence (AI) and machine learning (ML) have boomed, with new applications vigorously pursued across many sectors. At the same time, the computing and communications technologies on which we have come to rely present serious security concerns: cyberattacks have escalated in number, frequency, and impact, drawing increased attention to the vulnerabilities of cyber systems and the need to increase their security. In the face of this changing landscape, there is significant concern and interest among policymakers, security practitioners, technologists, researchers, and the public about the potential implications of AI and ML for cybersecurity. The National Academies of Sciences, Engineering, and Medicine convened a workshop on March 12-13, 2019 to discuss and explore these concerns. This publication summarizes the presentations and discussions from the workshop.

Book Introduction to Machine Learning with Applications in Information Security

Download or read book Introduction to Machine Learning with Applications in Information Security written by Mark Stamp and published by CRC Press. This book was released on 2022-09-27 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Machine Learning with Applications in Information Security, Second Edition provides a classroom-tested introduction to a wide variety of machine learning and deep learning algorithms and techniques, reinforced via realistic applications. The book is accessible and doesn’t prove theorems, or dwell on mathematical theory. The goal is to present topics at an intuitive level, with just enough detail to clarify the underlying concepts. The book covers core classic machine learning topics in depth, including Hidden Markov Models (HMM), Support Vector Machines (SVM), and clustering. Additional machine learning topics include k-Nearest Neighbor (k-NN), boosting, Random Forests, and Linear Discriminant Analysis (LDA). The fundamental deep learning topics of backpropagation, Convolutional Neural Networks (CNN), Multilayer Perceptrons (MLP), and Recurrent Neural Networks (RNN) are covered in depth. A broad range of advanced deep learning architectures are also presented, including Long Short-Term Memory (LSTM), Generative Adversarial Networks (GAN), Extreme Learning Machines (ELM), Residual Networks (ResNet), Deep Belief Networks (DBN), Bidirectional Encoder Representations from Transformers (BERT), and Word2Vec. Finally, several cutting-edge deep learning topics are discussed, including dropout regularization, attention, explainability, and adversarial attacks. Most of the examples in the book are drawn from the field of information security, with many of the machine learning and deep learning applications focused on malware. The applications presented serve to demystify the topics by illustrating the use of various learning techniques in straightforward scenarios. Some of the exercises in this book require programming, and elementary computing concepts are assumed in a few of the application sections. However, anyone with a modest amount of computing experience should have no trouble with this aspect of the book. Instructor resources, including PowerPoint slides, lecture videos, and other relevant material are provided on an accompanying website: http://www.cs.sjsu.edu/~stamp/ML/.

Book Building Machine Learning Pipelines

Download or read book Building Machine Learning Pipelines written by Hannes Hapke and published by "O'Reilly Media, Inc.". This book was released on 2020-07-13 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques

Book Hands On Artificial Intelligence for Cybersecurity

Download or read book Hands On Artificial Intelligence for Cybersecurity written by Alessandro Parisi and published by Packt Publishing Ltd. This book was released on 2019-08-02 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build smart cybersecurity systems with the power of machine learning and deep learning to protect your corporate assets Key FeaturesIdentify and predict security threats using artificial intelligenceDevelop intelligent systems that can detect unusual and suspicious patterns and attacksLearn how to test the effectiveness of your AI cybersecurity algorithms and toolsBook Description Today's organizations spend billions of dollars globally on cybersecurity. Artificial intelligence has emerged as a great solution for building smarter and safer security systems that allow you to predict and detect suspicious network activity, such as phishing or unauthorized intrusions. This cybersecurity book presents and demonstrates popular and successful AI approaches and models that you can adapt to detect potential attacks and protect your corporate systems. You'll learn about the role of machine learning and neural networks, as well as deep learning in cybersecurity, and you'll also learn how you can infuse AI capabilities into building smart defensive mechanisms. As you advance, you'll be able to apply these strategies across a variety of applications, including spam filters, network intrusion detection, botnet detection, and secure authentication. By the end of this book, you'll be ready to develop intelligent systems that can detect unusual and suspicious patterns and attacks, thereby developing strong network security defenses using AI. What you will learnDetect email threats such as spamming and phishing using AICategorize APT, zero-days, and polymorphic malware samplesOvercome antivirus limits in threat detectionPredict network intrusions and detect anomalies with machine learningVerify the strength of biometric authentication procedures with deep learningEvaluate cybersecurity strategies and learn how you can improve themWho this book is for If you’re a cybersecurity professional or ethical hacker who wants to build intelligent systems using the power of machine learning and AI, you’ll find this book useful. Familiarity with cybersecurity concepts and knowledge of Python programming is essential to get the most out of this book.

Book Leveraging Artificial Intelligence  AI  Competencies for Next Generation Cybersecurity Solutions

Download or read book Leveraging Artificial Intelligence AI Competencies for Next Generation Cybersecurity Solutions written by Pethuru Raj and published by CRC Press. This book was released on 2024-11-22 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern enterprises are facing growing cybersecurity issues due to the massive volume of security-related data they generate over time. AI systems can be developed to resolve a range of these issues with comparative ease. This new book describes the various types of cybersecurity problems faced by businesses and how advanced AI algorithms and models can help eliminate them. With chapters from industry and security experts, this volume discribes the various types of cybersecurity problems faced by businesses and how advanced AI algorithms and models can help elimintate them. With chapters from industry and security experts, this volume discusses the many new and emerging AI technologies and approaches that can be harnessed to combat cyberattacks, including big data analytics techniques, deep neural networks, cloud computer networks, convolutional neural networks, IoT edge devices, machine learning approaches, deep learning, blockchain technology, convolutional neural networks, and more. Some unique features of this book include: Detailed overview of various security analytics techniques and tools Comprehensive descriptions of the emerging and evolving aspects of artificial intelligence (AI) technologies Industry case studies for practical comprehension and application This book, Leveraging the Artificial Intelligence Competencies for Next-Generation Cybersecurity Solutions, illustrates how AI is a futuristic and flexible technology that can be effectively used for tackling the growing menace of cybercriminals. It clearly demystifies the unique contributions of AI algorithms, models, frameworks, and libraries in nullifying the cyberattacks. The volume will be a valuable resource for research students, scholars, academic professors, business executives, security architects, and consultants in the IT industry.

Book Handbook of Research on Machine and Deep Learning Applications for Cyber Security

Download or read book Handbook of Research on Machine and Deep Learning Applications for Cyber Security written by Ganapathi, Padmavathi and published by IGI Global. This book was released on 2019-07-26 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the advancement of technology continues, cyber security continues to play a significant role in today’s world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.

Book The Smart Cyber Ecosystem for Sustainable Development

Download or read book The Smart Cyber Ecosystem for Sustainable Development written by Pardeep Kumar and published by John Wiley & Sons. This book was released on 2021-10-12 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Smart Cyber Ecosystem for Sustainable Development As the entire ecosystem is moving towards a sustainable goal, technology driven smart cyber system is the enabling factor to make this a success, and the current book documents how this can be attained. The cyber ecosystem consists of a huge number of different entities that work and interact with each other in a highly diversified manner. In this era, when the world is surrounded by many unseen challenges and when its population is increasing and resources are decreasing, scientists, researchers, academicians, industrialists, government agencies and other stakeholders are looking toward smart and intelligent cyber systems that can guarantee sustainable development for a better and healthier ecosystem. The main actors of this cyber ecosystem include the Internet of Things (IoT), artificial intelligence (AI), and the mechanisms providing cybersecurity. This book attempts to collect and publish innovative ideas, emerging trends, implementation experiences, and pertinent user cases for the purpose of serving mankind and societies with sustainable societal development. The 22 chapters of the book are divided into three sections: Section I deals with the Internet of Things, Section II focuses on artificial intelligence and especially its applications in healthcare, whereas Section III investigates the different cyber security mechanisms. Audience This book will attract researchers and graduate students working in the areas of artificial intelligence, blockchain, Internet of Things, information technology, as well as industrialists, practitioners, technology developers, entrepreneurs, and professionals who are interested in exploring, designing and implementing these technologies.

Book AI in Cybersecurity

Download or read book AI in Cybersecurity written by Leslie F. Sikos and published by Springer. This book was released on 2018-09-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of state-of-the-art AI approaches to cybersecurity and cyberthreat intelligence, offering strategic defense mechanisms for malware, addressing cybercrime, and assessing vulnerabilities to yield proactive rather than reactive countermeasures. The current variety and scope of cybersecurity threats far exceed the capabilities of even the most skilled security professionals. In addition, analyzing yesterday’s security incidents no longer enables experts to predict and prevent tomorrow’s attacks, which necessitates approaches that go far beyond identifying known threats. Nevertheless, there are promising avenues: complex behavior matching can isolate threats based on the actions taken, while machine learning can help detect anomalies, prevent malware infections, discover signs of illicit activities, and protect assets from hackers. In turn, knowledge representation enables automated reasoning over network data, helping achieve cybersituational awareness. Bringing together contributions by high-caliber experts, this book suggests new research directions in this critical and rapidly growing field.

Book Machine Learning Forensics for Law Enforcement  Security  and Intelligence

Download or read book Machine Learning Forensics for Law Enforcement Security and Intelligence written by Jesus Mena and published by CRC Press. This book was released on 2016-04-19 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly, crimes and fraud are digital in nature, occurring at breakneck speed and encompassing large volumes of data. To combat this unlawful activity, knowledge about the use of machine learning technology and software is critical. Machine Learning Forensics for Law Enforcement, Security, and Intelligence integrates an assortment of deductive

Book Advances in Cyber Security

Download or read book Advances in Cyber Security written by Nibras Abdullah and published by Springer Nature. This book was released on 2021-12-02 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents refereed proceedings of the Third International Conference on Advances in Cyber Security, ACeS 2021, held in Penang, Malaysia, in August 2021. The 36 full papers were carefully reviewed and selected from 92 submissions. The papers are organized in the following topical sections: Internet of Things, Industry 4.0 and Blockchain, and Cryptology; Digital Forensics and Surveillance, Botnet and Malware, DDoS, and Intrusion Detection/Prevention; Ambient Cloud and Edge Computing, SDN, Wireless and Cellular Communication; Governance, Social Media, Mobile and Web, Data Privacy, Data Policy and Fake News.

Book Mastering Machine Learning for Penetration Testing

Download or read book Mastering Machine Learning for Penetration Testing written by Chiheb Chebbi and published by Packt Publishing Ltd. This book was released on 2018-06-27 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become a master at penetration testing using machine learning with Python Key Features Identify ambiguities and breach intelligent security systems Perform unique cyber attacks to breach robust systems Learn to leverage machine learning algorithms Book Description Cyber security is crucial for both businesses and individuals. As systems are getting smarter, we now see machine learning interrupting computer security. With the adoption of machine learning in upcoming security products, it’s important for pentesters and security researchers to understand how these systems work, and to breach them for testing purposes. This book begins with the basics of machine learning and the algorithms used to build robust systems. Once you’ve gained a fair understanding of how security products leverage machine learning, you'll dive into the core concepts of breaching such systems. Through practical use cases, you’ll see how to find loopholes and surpass a self-learning security system. As you make your way through the chapters, you’ll focus on topics such as network intrusion detection and AV and IDS evasion. We’ll also cover the best practices when identifying ambiguities, and extensive techniques to breach an intelligent system. By the end of this book, you will be well-versed with identifying loopholes in a self-learning security system and will be able to efficiently breach a machine learning system. What you will learn Take an in-depth look at machine learning Get to know natural language processing (NLP) Understand malware feature engineering Build generative adversarial networks using Python libraries Work on threat hunting with machine learning and the ELK stack Explore the best practices for machine learning Who this book is for This book is for pen testers and security professionals who are interested in learning techniques to break an intelligent security system. Basic knowledge of Python is needed, but no prior knowledge of machine learning is necessary.