EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Dislocation Mechanism Based Crystal Plasticity

Download or read book Dislocation Mechanism Based Crystal Plasticity written by Zhuo Zhuang and published by Academic Press. This book was released on 2019-04-12 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Book Thermally Activated Mechanisms in Crystal Plasticity

Download or read book Thermally Activated Mechanisms in Crystal Plasticity written by Daniel Caillard and published by Elsevier Science. This book was released on 2003 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of the.

Book Plasticity and Beyond

    Book Details:
  • Author : Jörg Schröder
  • Publisher : Springer Science & Business Media
  • Release : 2013-09-20
  • ISBN : 3709116252
  • Pages : 417 pages

Download or read book Plasticity and Beyond written by Jörg Schröder and published by Springer Science & Business Media. This book was released on 2013-09-20 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

Book Strengthening Mechanisms in Crystal Plasticity

Download or read book Strengthening Mechanisms in Crystal Plasticity written by Ali Argon and published by Oxford University Press on Demand. This book was released on 2008 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.

Book Crystal Plasticity

    Book Details:
  • Author : Wojciech Polkowski
  • Publisher : MDPI
  • Release : 2021-04-27
  • ISBN : 3036508384
  • Pages : 438 pages

Download or read book Crystal Plasticity written by Wojciech Polkowski and published by MDPI. This book was released on 2021-04-27 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a collection of 25 original papers (including one review paper) on state-of-the art achievements in the theory and practice of crystals plasticity. The articles cover a wide scope of research on materials behavior subjected to external loadings, starting from atomic-scale simulations, and a new methodological aspect, to experiments on a structure and mechanical response upon a large-scale processing. Thus, a presented contribution of researchers from 18 different countries can be virtually divided into three groups, namely (i) “modelling and simulation”; (ii) “methodological aspects”; and (iii) “experiments on process/structure/properties relationship”. Furthermore, a large variety of materials are investigated including more conventional (steels, copper, titanium, nickel, aluminum, and magnesium alloys) and advanced ones (composites or high entropy alloys). The book should be interested for senior students, researchers and engineers working within discipline of materials science and solid state physics of crystalline materials.

Book Reversible Crystal Plasticity

    Book Details:
  • Author : Vladimir Boyko
  • Publisher : Springer Science & Business Media
  • Release : 1997-05-09
  • ISBN : 9780883188699
  • Pages : 328 pages

Download or read book Reversible Crystal Plasticity written by Vladimir Boyko and published by Springer Science & Business Media. This book was released on 1997-05-09 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Market: Research scientists and students in materials science, physical metallurgy, and solid state physics. This detailed monograph presents the theory of reversible plasticity as a new direction of development in crystal physics. It features a unique integration of traditional concepts and new studies of high- temperature superconductors, plus in-depth analyses of various related phenomena. Among the topics discussed are elastic twinning (discovered by Dr. Garber), thermoelastic martensite transformation, superelasticity, shape memory effects, the domain structure of ferroelastics, and elastic aftereffect. Partial Contents: 1. Transformation of Dislocations. Dislocation Description of a Phase Transformation Front. 2. Dislocation Theory of Elastic Twinning. Twinning of Crystals: Principal Definitions. 3. Statics and Dynamics of Elastic Twinning. Discovery of Elastic Twinning. Verification of the Validity of the Static Theory in a Description of the Macroscopic Behavior of an Elastic Twin. 4. Thermoelastic Martensitic Transformation. Martensitic Transformation: a Diffusionless Process of Rebuilding the Crystal Lattice. 5. Superelasticity and the Shape Memory Effect. Main Characteristics of Superelasticity and Shape Memory Effects. 6. Reversible Plasticity of Ferroelastics. Ferroelastics: Main Definitions. 7. Investigation of Reversible Plasticity of Crystals by the Acoustic Emission Method. Emission of Sound by Moving Dislocations andTheir Pileups. Methods Used in Experimental Investigations of the Acoustic Emission Generated by a SingleTwin. Acoustic Emission Associated with Elastic Twinning. 8. Influence of Reversible Plasticity of Superconductors on Their Physical Properties. Reversible Changes in the Parameters of Traditional Superconductors under the Action of Elastic Stresses. Influence of Magnetic Fields on Reversible Changes in the Parameters

Book Plasticity

    Book Details:
  • Author : Ronaldo I. Borja
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-14
  • ISBN : 3642385478
  • Pages : 261 pages

Download or read book Plasticity written by Ronaldo I. Borja and published by Springer Science & Business Media. This book was released on 2013-06-14 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

Book Crystal Plasticity at Micro  and Nano scale Dimensions

Download or read book Crystal Plasticity at Micro and Nano scale Dimensions written by Ronald W. Armstrong and published by MDPI. This book was released on 2021-08-31 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties.

Book Nonlinear Mechanics of Crystals

Download or read book Nonlinear Mechanics of Crystals written by John D. Clayton and published by Springer Science & Business Media. This book was released on 2010-11-01 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes behavior of crystalline solids primarily via methods of modern continuum mechanics. Emphasis is given to geometrically nonlinear descriptions, i.e., finite deformations. Primary topics include anisotropic crystal elasticity, plasticity, and methods for representing effects of defects in the solid on the material's mechanical response. Defects include crystal dislocations, point defects, twins, voids or pores, and micro-cracks. Thermoelastic, dielectric, and piezoelectric behaviors are addressed. Traditional and higher-order gradient theories of mechanical behavior of crystalline solids are discussed. Differential-geometric representations of kinematics of finite deformations and lattice defect distributions are presented. Multi-scale modeling concepts are described in the context of elastic and plastic material behavior. Representative substances towards which modeling techniques may be applied are single- and poly- crystalline metals and alloys, ceramics, and minerals. This book is intended for use by scientists and engineers involved in advanced constitutive modeling of nonlinear mechanical behavior of solid crystalline materials. Knowledge of fundamentals of continuum mechanics and tensor calculus is a prerequisite for accessing much of the text. This book could be used as supplemental material for graduate courses on continuum mechanics, elasticity, plasticity, micromechanics, or dislocation mechanics, for students in various disciplines of engineering, materials science, applied mathematics, and condensed matter physics.

Book Numerically Efficient Gradient Crystal Plasticity with a Grain Boundary Yield Criterion and Dislocation based Work Hardening

Download or read book Numerically Efficient Gradient Crystal Plasticity with a Grain Boundary Yield Criterion and Dislocation based Work Hardening written by Wulfinghoff, Stephan and published by KIT Scientific Publishing. This book was released on 2014-12-10 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a contribution to the further development of gradient plasticity. Several open questions are addressed, where the efficient numerical implementation is particularly focused on. Thebook inspects an equivalent plastic strain gradient plasticity theory and a grain boundary yield model. Experiments can successfully be reproduced. The hardening model is based on dislocation densities evolving according to partial differential equations taking into account dislocation transport.

Book Creep of Crystals

    Book Details:
  • Author : Jean-Paul Poirier
  • Publisher : Cambridge University Press
  • Release : 1985-02-28
  • ISBN : 9780521278515
  • Pages : 280 pages

Download or read book Creep of Crystals written by Jean-Paul Poirier and published by Cambridge University Press. This book was released on 1985-02-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook describes the physics of the plastic deformation of solids at high temperatures. It is directed at geologists or geophysicists interested in the high-temperature behaviour of crystals who wish to become acquainted with the methods of materials science in so far as they are useful to earth scientists. It explains the most important models and recent experimental results without losing the reader in the primary literature of materials science. In turn the book deals with the essential solid-state physics; thermodynamics and hydrostatics of creep; creep models and their applications in the geological sciences; diffusion creep; superplastic deformation and deformation enhanced by phase transformations. Five concluding chapters give experimental results for metals, ceramics and minerals. There are extensive bibliographies to aid further study.

Book Computational Methods for Plasticity

Download or read book Computational Methods for Plasticity written by Eduardo A. de Souza Neto and published by John Wiley & Sons. This book was released on 2011-09-21 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic – i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book: Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume. Includes many numerical examples that illustrate the application of the methodologies described. Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics. Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book’s companion website. This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics.

Book Plasticity of Crystalline Materials

Download or read book Plasticity of Crystalline Materials written by Ioan R. Ionescu and published by Wiley-ISTE. This book was released on 2011-08-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details recent advances in all aspects related to scale transition in crystal plasticity and damage, with a particular focus on the challenges associated with the characterization and modeling of this class of complex interactions. The following topics are included: Innovative characterization techniques (multi-scale characterization, SEMTEM coupling, TEM-micro-diffraction coupling, in-situ mechanical tests, localization, image correlation, displacement field measurements, tomography, etc.). Computational crystal plasticity and damage (dislocation dynamics and ab initio calculations, microstructure evolution of polycrystals, comparison between FE, fast Fourier transform and self-consistent approaches, intragranular slip, heterogeneities, discrete approaches, etc.). The book gathers together selected papers from the invited lectures presented at the 3rd and 4th US-France Symposia organized by the editors under the auspices of the International Center for Applied Computational Mechanics (ICACM).

Book Basic Engineering Plasticity

Download or read book Basic Engineering Plasticity written by David Rees and published by Elsevier. This book was released on 2012-12-02 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasticity is concerned with understanding the behavior of metals and alloys when loaded beyond the elastic limit, whether as a result of being shaped or as they are employed for load bearing structures. Basic Engineering Plasticity delivers a comprehensive and accessible introduction to the theories of plasticity. It draws upon numerical techniques and theoretical developments to support detailed examples of the application of plasticity theory. This blend of topics and supporting textbook features ensure that this introduction to the science of plasticity will be valuable for a wide range of mechanical and manufacturing engineering students and professionals. - Brings together the elements of the mechanics of plasticity most pertinent to engineers, at both the micro- and macro-levels - Covers the theory and application of topics such as Limit Analysis, Slip Line Field theory, Crystal Plasticity, Sheet and Bulk Metal Forming, as well as the use of Finite Element Analysis - Clear and well-organized with extensive worked engineering application examples, and end of chapter exercises

Book Finite Plastic Deformation of Crystalline Solids

Download or read book Finite Plastic Deformation of Crystalline Solids written by K. S. Havner and published by Cambridge University Press. This book was released on 1992-03-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Mechanics of Microstructured Materials

Download or read book Mechanics of Microstructured Materials written by Helmut J. Böhm and published by Springer. This book was released on 2014-05-04 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work deals with the thermomechanical mechanical behavior of microstructured materials, which has attracted considerable interest from both the academic and the industrial research communities. The past decade has witnessed major progress in the development of analytical as well as numerical modeling approaches and of experimental methods in this field. Considerable research efforts have been aimed at obtaining microstructure-property correlations and at studying the damage and failure behavior of microstructured materials. The book combines an overview of important analytical and numerical modeling approaches in continuum micromechanics and is aimed at academic and industrial researchers, such as materials scientists, mechanical engineers, and applied physicists, who are working or planning to work in the field of mechanics of microstructured materials such as composites, metals and ceramics.