Download or read book High Frequency Financial Econometrics written by Yacine Aït-Sahalia and published by Princeton University Press. This book was released on 2014-07-21 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.
Download or read book Separating Information Maximum Likelihood Method for High Frequency Financial Data written by Naoto Kunitomo and published by Springer. This book was released on 2018-06-14 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic explanation of the SIML (Separating Information Maximum Likelihood) method, a new approach to financial econometrics. Considerable interest has been given to the estimation problem of integrated volatility and covariance by using high-frequency financial data. Although several new statistical estimation procedures have been proposed, each method has some desirable properties along with some shortcomings that call for improvement. For estimating integrated volatility, covariance, and the related statistics by using high-frequency financial data, the SIML method has been developed by Kunitomo and Sato to deal with possible micro-market noises. The authors show that the SIML estimator has reasonable finite sample properties as well as asymptotic properties in the standard cases. It is also shown that the SIML estimator has robust properties in the sense that it is consistent and asymptotically normal in the stable convergence sense when there are micro-market noises, micro-market (non-linear) adjustments, and round-off errors with the underlying (continuous time) stochastic process. Simulation results are reported in a systematic way as are some applications of the SIML method to the Nikkei-225 index, derived from the major stock index in Japan and the Japanese financial sector.
Download or read book Handbook of Modeling High Frequency Data in Finance written by Frederi G. Viens and published by John Wiley & Sons. This book was released on 2011-12-20 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: CUTTING-EDGE DEVELOPMENTS IN HIGH-FREQUENCY FINANCIAL ECONOMETRICS In recent years, the availability of high-frequency data and advances in computing have allowed financial practitioners to design systems that can handle and analyze this information. Handbook of Modeling High-Frequency Data in Finance addresses the many theoretical and practical questions raised by the nature and intrinsic properties of this data. A one-stop compilation of empirical and analytical research, this handbook explores data sampled with high-frequency finance in financial engineering, statistics, and the modern financial business arena. Every chapter uses real-world examples to present new, original, and relevant topics that relate to newly evolving discoveries in high-frequency finance, such as: Designing new methodology to discover elasticity and plasticity of price evolution Constructing microstructure simulation models Calculation of option prices in the presence of jumps and transaction costs Using boosting for financial analysis and trading The handbook motivates practitioners to apply high-frequency finance to real-world situations by including exclusive topics such as risk measurement and management, UHF data, microstructure, dynamic multi-period optimization, mortgage data models, hybrid Monte Carlo, retirement, trading systems and forecasting, pricing, and boosting. The diverse topics and viewpoints presented in each chapter ensure that readers are supplied with a wide treatment of practical methods. Handbook of Modeling High-Frequency Data in Finance is an essential reference for academics and practitioners in finance, business, and econometrics who work with high-frequency data in their everyday work. It also serves as a supplement for risk management and high-frequency finance courses at the upper-undergraduate and graduate levels.
Download or read book Modelling and Forecasting High Frequency Financial Data written by Stavros Degiannakis and published by Springer. This book was released on 2016-04-29 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global financial crisis has reopened discussion surrounding the use of appropriate theoretical financial frameworks to reflect the current economic climate. There is a need for more sophisticated analytical concepts which take into account current quantitative changes and unprecedented turbulence in the financial markets. This book provides a comprehensive guide to the quantitative analysis of high frequency financial data in the light of current events and contemporary issues, using the latest empirical research and theory. It highlights and explains the shortcomings of theoretical frameworks and provides an explanation of high-frequency theory, emphasising ways in which to critically apply this knowledge within a financial context. Modelling and Forecasting High Frequency Financial Data combines traditional and updated theories and applies them to real-world financial market situations. It will be a valuable and accessible resource for anyone wishing to understand quantitative analysis and modelling in current financial markets.
Download or read book High Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.
Download or read book Spectral Analysis of Large Dimensional Random Matrices written by Zhidong Bai and published by Springer Science & Business Media. This book was released on 2009-12-10 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.
Download or read book An Introduction to High Frequency Finance written by Ramazan Gençay and published by Elsevier. This book was released on 2001-05-29 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liquid markets generate hundreds or thousands of ticks (the minimum change in price a security can have, either up or down) every business day. Data vendors such as Reuters transmit more than 275,000 prices per day for foreign exchange spot rates alone. Thus, high-frequency data can be a fundamental object of study, as traders make decisions by observing high-frequency or tick-by-tick data. Yet most studies published in financial literature deal with low frequency, regularly spaced data. For a variety of reasons, high-frequency data are becoming a way for understanding market microstructure. This book discusses the best mathematical models and tools for dealing with such vast amounts of data.This book provides a framework for the analysis, modeling, and inference of high frequency financial time series. With particular emphasis on foreign exchange markets, as well as currency, interest rate, and bond futures markets, this unified view of high frequency time series methods investigates the price formation process and concludes by reviewing techniques for constructing systematic trading models for financial assets.
Download or read book High Frequency Financial Econometrics written by Luc Bauwens and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shedding light on some of the most pressing open questions in the analysis of high frequency data, this volume presents cutting-edge developments in high frequency financial econometrics. Coverage spans a diverse range of topics, including market microstructure, tick-by-tick data, bond and foreign exchange markets, and large dimensional volatility modeling. The volume is of interest to graduate students, researchers, and industry professionals.
Download or read book The Elements of Financial Econometrics written by Jianqing Fan and published by Cambridge University Press. This book was released on 2017-03-23 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compact, master's-level textbook on financial econometrics, focusing on methodology and including real financial data illustrations throughout. The mathematical level is purposely kept moderate, allowing the power of the quantitative methods to be understood without too much technical detail.
Download or read book Econometrics of Financial High Frequency Data written by Nikolaus Hautsch and published by Springer Science & Business Media. This book was released on 2011-10-12 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The availability of financial data recorded on high-frequency level has inspired a research area which over the last decade emerged to a major area in econometrics and statistics. The growing popularity of high-frequency econometrics is driven by technological progress in trading systems and an increasing importance of intraday trading, liquidity risk, optimal order placement as well as high-frequency volatility. This book provides a state-of-the art overview on the major approaches in high-frequency econometrics, including univariate and multivariate autoregressive conditional mean approaches for different types of high-frequency variables, intensity-based approaches for financial point processes and dynamic factor models. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications to volatility and liquidity estimation, order book modelling and market microstructure analysis.
Download or read book Financial Mathematics Volatility and Covariance Modelling written by Julien Chevallier and published by Routledge. This book was released on 2019-06-28 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an up-to-date series of advanced chapters on applied financial econometric techniques pertaining the various fields of commodities finance, mathematics & stochastics, international macroeconomics and financial econometrics. Financial Mathematics, Volatility and Covariance Modelling: Volume 2 provides a key repository on the current state of knowledge, the latest debates and recent literature on financial mathematics, volatility and covariance modelling. The first section is devoted to mathematical finance, stochastic modelling and control optimization. Chapters explore the recent financial crisis, the increase of uncertainty and volatility, and propose an alternative approach to deal with these issues. The second section covers financial volatility and covariance modelling and explores proposals for dealing with recent developments in financial econometrics This book will be useful to students and researchers in applied econometrics; academics and students seeking convenient access to an unfamiliar area. It will also be of great interest established researchers seeking a single repository on the current state of knowledge, current debates and relevant literature.
Download or read book Advances in Multivariate Statistical Methods written by Ashis Sengupta and published by World Scientific. This book was released on 2009 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of research articles on multivariate statistical methods, encompassing both theoretical advances and emerging applications in a variety of scientific disciplines. It serves as a tribute to Professor S N Roy, an eminent statistician who has made seminal contributions to the area of multivariate statistical methods, on his birth centenary. In the area of emerging applications, the topics include bioinformatics, categorical data and clinical trials, econometrics, longitudinal data analysis, microarray data analysis, sample surveys, statistical process control, etc. Researchers, professionals and advanced graduates will find the book an essential resource for modern developments in theory as well as for innovative and emerging important applications in the area of multivariate statistical methods.
Download or read book Fourier Malliavin Volatility Estimation written by Maria Elvira Mancino and published by Springer. This book was released on 2017-03-01 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a user-friendly presentation of the main theoretical properties of the Fourier-Malliavin volatility estimation, allowing the readers to experience the potential of the approach and its application in various financial settings. Readers are given examples and instruments to implement this methodology in various financial settings and applications of real-life data. A detailed bibliographic reference is included to permit an in-depth study.
Download or read book Recent Advances in Theory and Methods for the Analysis of High Dimensional and High Frequency Financial Data written by Norman R. Swanson and published by MDPI. This book was released on 2021-08-31 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, considerable attention has been placed on the development and application of tools useful for the analysis of the high-dimensional and/or high-frequency datasets that now dominate the landscape. The purpose of this Special Issue is to collect both methodological and empirical papers that develop and utilize state-of-the-art econometric techniques for the analysis of such data.
Download or read book Intelligent Decision Technologies 2018 written by Ireneusz Czarnowski and published by Springer. This book was released on 2018-05-30 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the KES-IDT-2018 conference, held in Gold Coast, Queensland, Australia, on June 20–22, 2018 The conference provided opportunities to present and discuss the latest research results, promoting knowledge transfer and the generation of new ideas in the field of intelligent decision-making. The range of topics explored is wide, and includes methods for decision-making, decision support, data analysis, modeling and many more in areas such as finance, economics, management, engineering and transportation. The book contains several sections devoted to specific topics, such as: · Decision-Making Theory for Economics · Advances in Knowledge-based Statistical Data Analysis · On Knowledge-Based Digital Ecosystems & Technologies for Smart and Intelligent Decision Support Systems · Soft Computing Models in Industrial and Management Engineering · Computational Media Computing and its Applications · Intelligent Decision-Making Technologies · Digital Architectures and Decision Management
Download or read book Handbook of Volatility Models and Their Applications written by Luc Bauwens and published by John Wiley & Sons. This book was released on 2012-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.
Download or read book Studies of Credit and Equity Markets with Concepts of Theoretical Physics written by Michael Münnix and published by Springer Science & Business Media. This book was released on 2011-07-29 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: Michael C. Münnix analyses the statistical dependencies in financial markets and develops mathematical models using concepts and methods from physics. The author focuses on aspects that played a key role in the emergence of the recent financial crisis: estimation of credit risk, dynamics of statistical dependencies, and correlations on small time-scales. He visualizes the findings for various large-scale empirical studies of market data. The results give novel insights into the mechanisms of financial markets and allow conclusions on how to reduce financial risk significantly.