EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Coupled Modeling of Dynamic Reservoir Well Interactions Under Liquid loading Conditions

Download or read book Coupled Modeling of Dynamic Reservoir Well Interactions Under Liquid loading Conditions written by Akkharachai Limpasurat and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Liquid loading in a gas well occurs when the upward gas flow rate is insufficient to lift the coproduced liquid to the surface, which results in an accumulation of liquid at the bottom of the well. The liquid column in the tubing creates backpressure on the formation, which decreases the gas production rate and may stop the well from flowing. To model these phenomena, the dynamic interaction between the reservoir and the wellbore must be characterized. Due to wellbore phase re-distribution and potential phase-reinjection into the reservoir, the boundary conditions must be able to handle changing flow direction through the connections between the two subsystems. This study presents a new formulation of the wellbore boundary condition used in reservoir simulators. The boundary condition uses the new state variable, the multiphase zero flow pressure (MPZFP, p0), to determine flow direction in the connection grid block. If the wellbore pressure is less than the p0, the connection is producing; otherwise, it is injecting. The volumetric proportion of the flow is always determined by the upstream side. The new reservoir simulator is used in coupled modeling associated with liquid loading phenomena. The metastable condition can be modeled in a simple manner without any limiting assumptions and numerical stability problems. We also applied this simulator for history matching of a gas well flowing with an intermittent production strategy. A basic transient wellbore model was developed for this purpose. The long-term tubinghead pressure (THP) history can be traced by our coupled simulation. Our modeling examples indicated that, the new wellbore boundary condition is suitable in modeling the dynamic interactions between reservoir and wellbore subsystems during liquid loading. The flow direction through the connection grid block can be automatically detected by our boundary condition without numerical difficulty during the course of the simulation. In addition, the capillary pressure can be accounted at the connection grid blocks when applying our new formulation in the reservoir simulator. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151699

Book Modeling of Multiphase Flow in the Near wellbore Region of the Reservoir Under Transient Conditions

Download or read book Modeling of Multiphase Flow in the Near wellbore Region of the Reservoir Under Transient Conditions written by He Zhang and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In oil and gas field operations, the dynamic interactions between reservoir and wellbore cannot be ignored, especially during transient flow in the near-wellbore region. As gas hydrocarbons are produced from underground reservoirs to the surface, liquids can come from condensate dropout, water break-through from the reservoir, or vapor condensation in the wellbore. In all three cases, the higher density liquid needs to be transported to the surface by the gas. If the gas phase does not provide sufficient energy to lift the liquid out of the well, the liquid will accumulate in the wellbore. The accumulation of liquid will impose an additional backpressure on the formation that can significantly affect the productivity of the well. The additional backpressure appears to result in a "U-shaped" pressure distribution along the radius in the near-wellbore region that explains the physics of the backflow scenario. However, current modeling approaches cannot capture this U-shaped pressure distribution, and the conventional pressure profile cannot explain the physics of the reinjection. In particular, current steady-state models to predict the arrival of liquid loading, diagnose its impact on production, and screen remedial options are inadequate, including Turner's criterion and Nodal Analysis. However, the dynamic interactions between the reservoir and the wellbore present a fully transient scenario, therefore none of the above solutions captures the complexity of flow transients associated with liquid loading in gas wells. The most satisfactory solution would be to couple a transient reservoir model to a transient well model, which will provide reliable predictive models to link the well dynamics with the intermittent response of a reservoir that is typical of liquid loading in gas wells. The modeling work presented here can be applied to investigate liquid loading mechanisms, and evaluate any other situation where the transient flow behavior of the near-wellbore region of the reservoir cannot be ignored, including system start-up and shut-down.

Book Reservoir Wellbore Coupled Simulation of Liquid Loaded Gas Well Performance

Download or read book Reservoir Wellbore Coupled Simulation of Liquid Loaded Gas Well Performance written by Muhammad Feldy Riza and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Liquid loading of gas wells causes production difficulty and reduces ultimate recovery from these wells. In 1969, Turner proposed that existence of annular two-phase flow at the wellhead is necessary for the well to avoid liquid loading. In this work we applied Turner's approach to the entire wellbore. Analysis of available data from literature showed that transition from annular flow occurs much earlier at well bottom than at the wellhead. This entire wellbore approach proved to be more accurate in predicting onset of liquid loading. In addition, we developed a simple pseudo-steady-state reservoir flow model that was seamlessly connected to a wellbore two-phase flow model. The model is capable of predicting the time a gas well will produce without getting loaded with liquid and the length of time it can produce since loading inception if no intervention is carried out. We were able to develop a normalized time function applicable many reservoirs that would be indicative of loading-free productive life of a gas well. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151637

Book Development of a Coupled Wellbore reservoir Compositional Simulator for Horizontal Wells

Download or read book Development of a Coupled Wellbore reservoir Compositional Simulator for Horizontal Wells written by Mahdy Shirdel and published by . This book was released on 2010 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-phase flow occurs during the production of oil and gas in the wellbores. Modeling this phenomenon is important for monitoring well productivity and designing surface facilities. Since the transient time period in the wellbore is usually shorter than reservoir time steps, stabilized flow is assumed in the wellbore. As such, semi-steady state models are used for modeling wellbore flow dynamics. However, in the case that flow variations happen in a short period of time (i.e., a gas kick during drilling) the use of a transient two-phase model is crucial. Over the last few years, a number of numerical and analytical wellbore simulators have been developed to mimic wellbore-reservoir interaction. However, some issues still remain a concern in these studies. The main issues surrounding a comprehensive wellbore model consist of fluid property calculations, such as black-oil or compositional models, governing equations, such as mechanistic or correlation-based models, effect of temperature variation and non-isothermal assumption, and methods for coupling the wellbore to the reservoir. In most cases, only standalone wellbore models for blackoil have been used to simulate reservoir and wellbore dynamic interactions. Those models are based on simplified assumptions that lead to an unrealistic estimation of pressure and temperature distributions inside the well. In addition, most reservoir simulators use rough estimates for the perforation pressure as a coupling condition between the wellbore and the reservoir, neglecting pressure drops in the horizontal section. In this study, we present an implementation of a compositional, pseudo steady-state, non-isothermal, coupled wellbore-reservoir simulator for fluid flow in wellbores with a vertical section and a horizontal section embedded on the producing reservoir. In addition, we present the implementation of a pseudo-compositional, fully implicit, transient two-fluid model for two-phase flow in wellbores. In this model, we solve gas/liquid mass balance, gas/liquid momentum balance, and two-phase energy equations in order to obtain the five primary variables: liquid velocity, gas velocity, pressure, holdup and temperature. In our simulation, we compared stratified, bubbly, intermittent flow effects on pressure and temperature distributions in either a transient or steady-state condition. We found that flow geometry variation in different regimes can significantly affect the flow parameters. We also observed that there are significant differences in flow rate prediction between a coupled wellbore-reservoir simulator and a stand-alone reservoir simulator, at the early stages of production. The outcome of this research leads to a more accurate and reliable simulation of multiphase flow in the wellbore, which can be applied to surface facility design, well performance optimization, and wellbore damage estimation.

Book An Introduction to Reservoir Simulation Using MATLAB GNU Octave

Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Book Integration of Numerical and Machine Learning Protocols for Coupled Reservoir wellbore Models

Download or read book Integration of Numerical and Machine Learning Protocols for Coupled Reservoir wellbore Models written by Venkataramana Putcha and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As the reservoir pressure declines with time, many of the wells do not have adequate bottom-hole pressure to carry the fluids to the surface. Under such circumstances, artificial lift mechanisms must be employed. Amongst various artificial lift mechanisms, a significant proportion of wells utilize the gas-lift mechanism, which is an extension of the natural flow. In gas-lift implementation, high pressure gas is injected into the wellbore through a valve, where injected gas supports production by altering the composition and reducing the density, and increasing the velocity of the produced fluids. In order to design a gas-lift system, a study of the inflow performance of the fluid from the reservoir into the wellbore, combined with the outflow performance of the fluids from the bottom of the wellbore to the surface is necessary. For this purpose, existing technologies for optimization of gas-lift systems predominantly use empirical correlations in order to reduce the computational overhead. These systems use a single-equation based inflow performance relations and black-oil outflow performance correlations that have restricted applicability in systems where the fluid composition varies spatially and temporally. The contemporary protocols consider the oil flow rate, water cut and formation gas-liquid ratio and well productivity index at a given instant of time to calculate the optimal quantity of gas lift injection. Due to this methodology, the effects of pressure decline and subsequent variations in well performance are not adequately captured. This results in a solution which determines the maximum liquid flow rate expected for a given gas lift injection rate only for the instantaneous period at which the study has been performed. This optimal gas lift injection rate may or may not provide the maximum total output of oil over the producing life of the well. As a first step, a compositional coupled numerical reservoir and wellbore hydraulics models has been developed as a part of this work. These hard-computing tools simulate the variations in composition, pressure and production profiles of a gas lift well and its associated reservoir from inception to abandonment. One more advantage of this method is that it can predict the future performance of a well with or without the details of well production history. This capability can be useful when gas lift is introduced in a well immediately after its completion post a drilling or a work-over job. Soft computing tools have gained popularity in the petroleum industry due to their speed, simplicity, wide range of applicability, capacity to identify patterns and ability to provide inverse solutions. The fully numerical coupled reservoir-wellbore simulator developed is computationally expensive. In order to develop a faster system, firstly, an ANN based wellbore hydraulics tool is developed and coupled with the numerical reservoir simulator. The data utilized for training the ANN tool was generated using the numerical wellbore hydraulics tool. Both the numerical and ANN wellbore hydraulics models were validated against cases from the field and another compositional numerical model from the literature. The average relative deviation with respect to field data was observed to be 2.2% and 2.4% respectively for the ANN and numerical wellbore hydraulics model, respectively. When compared against another compositional numerical model, the average relative deviation for the ANN based model was observed to be between 3.3% and 7.1%, while it was between 2.3% and 8.1% for the numerical model developed in this work. While the ANN based wellbore hydraulics model maintained the accuracy of the numerical model, it outperformed its counterpart the numerical model, by four orders of magnitude in terms of speed-up. The ANN based wellbore model was also coupled with the numerical reservoir simulator. This resultant model which involves a coupled numerical-ANN system is faster than the fully numerical coupled system by about 160 times. This coupled tool was used to generate a gas lift database of cumulative oil production of a well with various reservoir and wellbore operating conditions under a range of operating gas lift injection depths and flow rates. This database was used to develop an ANN based gas lift model that is capable of generating performance curves plotting total oil produced during the producing life of a well as a function of gas lift injection rate. Blind testing of the ANN gas lift model showed an average absolute error of 16.6 % with respect to the predictions of the coupled numerical-ANN reservoir wellbore model. This fully ANN based gas lift model provided a speed-up by four orders of magnitude with respect to the coupled numerical-ANN based model. Hence, a fast, robust and versatile model has been developed for maximizing total primary oil recovery using gas lift optimization through integration of numerical and neuro-simulation.

Book Development and Application of a Coupled Geomechanics Model for a Parallel Compositional Reservoir Simulator

Download or read book Development and Application of a Coupled Geomechanics Model for a Parallel Compositional Reservoir Simulator written by Feng Pan and published by . This book was released on 2009 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a stress-sensitive or stress-dependent reservoir, the interactions between its seepage field and in situ stress field are complex and affect hydrocarbon recovery. A coupled geomechanics and fluid-flow model can capture these relations between the fluid and solid, thereby presenting more precise history matchings and predictions for better well planning and reservoir management decisions. A traditional reservoir simulator cannot adequately or fully represent the ongoing coupled fluid-solid interactions during the production because of using the simplified update-formulation for porosity and the static absolute permeability during simulations. Many researchers have studied multiphase fluid-flow models coupled with geomechanics models during the past fifteen years. The purpose of this research is to develop a coupled geomechanics and compositional model and apply it to problems in the oil recovery processes. An equation of state compositional simulator called the General Purpose Adaptive Simulator (GPAS) is developed at The University of Texas at Austin and uses finite difference / finite control volume methods for the solution of its governing partial differential equations (PDEs). GPAS was coupled with a geomechanics model developed in this research, which uses a finite element method for discretization of the associated PDEs. Both the iteratively coupled solution procedure and the fully coupled solution procedure were implemented to couple the geomechanics and reservoir simulation modules in this work. Parallelization, testing, and verification for the coupled model were performed on parallel clusters of high-performance workstations. MPI was used for the data exchange in the iteratively coupled procedure. Different constitutive models were coded into GPAS to describe complicated behaviors of linear or nonlinear deformation in the geomechanics model. In addition, the geomechanics module was coupled with the dual porosity model in GPAS to simulate naturally fractured reservoirs. The developed coupled reservoir and geomechanics simulator was verified using analytical solutions. Various reservoir simulation case studies were carried out using the coupled geomechanics and GPAS modules.

Book Development and Application of a Coupled Geomechanics Model for a Parallel Compositional Reservoir Simulator

Download or read book Development and Application of a Coupled Geomechanics Model for a Parallel Compositional Reservoir Simulator written by Feng Pan (Ph. D.) and published by . This book was released on 2009 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a stress-sensitive or stress-dependent reservoir, the interactions between its seepage field and in situ stress field are complex and affect hydrocarbon recovery. A coupled geomechanics and fluid-flow model can capture these relations between the fluid and solid, thereby presenting more precise history matchings and predictions for better well planning and reservoir management decisions. A traditional reservoir simulator cannot adequately or fully represent the ongoing coupled fluid-solid interactions during the production because of using the simplified update-formulation for porosity and the static absolute permeability during simulations. Many researchers have studied multiphase fluid-flow models coupled with geomechanics models during the past fifteen years. The purpose of this research is to develop a coupled geomechanics and compositional model and apply it to problems in the oil recovery processes. An equation of state compositional simulator called the General Purpose Adaptive Simulator (GPAS) is developed at The University of Texas at Austin and uses finite difference / finite control volume methods for the solution of its governing partial differential equations (PDEs). GPAS was coupled with a geomechanics model developed in this research, which uses a finite element method for discretization of the associated PDEs. Both the iteratively coupled solution procedure and the fully coupled solution procedure were implemented to couple the geomechanics and reservoir simulation modules in this work. Parallelization, testing, and verification for the coupled model were performed on parallel clusters of high-performance workstations. MPI was used for the data exchange in the iteratively coupled procedure. Different constitutive models were coded into GPAS to describe complicated behaviors of linear or nonlinear deformation in the geomechanics model. In addition, the geomechanics module was coupled with the dual porosity model in GPAS to simulate naturally fractured reservoirs. The developed coupled reservoir and geomechanics simulator was verified using analytical solutions. Various reservoir simulation case studies were carried out using the coupled geomechanics and GPAS modules.

Book Reservoir Modelling

Download or read book Reservoir Modelling written by Steve Cannon and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the principles outlined can be applied to any modelling project regardless of the software used. The author - a noted practitioner in the field - captures the heterogeneity due to structure, stratigraphy and sedimentology that has an impact on flow in the reservoir. This essential guide follows a general workflow from data QC and project management, structural modelling, facies and property modelling to upscaling and the requirements for dynamic modelling. The author discusses structural elements of a model and reviews both seismic interpretation and depth conversion, which are known to contribute most to volumetric uncertainty and shows how large-scale stratigraphic relationships are integrated into the reservoir framework. The text puts the focus on geostatistical modelling of facies and heterogeneities that constrain the distribution of reservoir properties including porosity, permeability and water saturation. In addition, the author discusses the role of uncertainty analysis in the static model and its impact on volumetric estimation. The text also addresses some typical approaches to modelling specific reservoirs through a mix of case studies and illustrative examples and: -Offers a practical guide to the use of data to build a successful reservoir model -Draws on the latest advances in 3-D modelling software -Reviews facies modelling, the different methods and the need for understanding the geological interpretation of cores and logs -Presents information on upscaling both the structure and the properties of a fine-scale geological model for dynamic simulation -Stresses the importance of an interdisciplinary team-based approach Written for geophysicists, reservoir geologists and petroleum engineers, Reservoir Modelling offers the essential information needed to understand a reservoir for modelling and contains the multidisciplinary nature of a reservoir modelling project.

Book Dynamic Soil Structure Interaction

Download or read book Dynamic Soil Structure Interaction written by C. Zhang and published by Elsevier. This book was released on 1998-09-22 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Soil-structure interaction is one of the major topics in earthquake engineering and soil dynamics since it is closely related to the safety evaluation of many important engineering projects, such as nuclear power plants, to resist earthquakes. In dealing with the analysis of dynamic soil-structure interactions, one of the most difficult tasks is the modeling of unbounded media. To solve this problem, many numerical methods and techniques have been developed. This book summarizes the most recent developments and applications in the field of dynamic soil-structure interaction, both in China and Switzerland.An excellent book for scientists and engineers in civil engineering, structural engineering, geotechnical engineering and earthquake engineering.

Book A Coupled Wellbore reservoir Simulator to Model Multiphase Flow and Temperature Distribution

Download or read book A Coupled Wellbore reservoir Simulator to Model Multiphase Flow and Temperature Distribution written by Peyman Pourafshary and published by . This book was released on 2007 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrocarbon reserves are generally produced through wells drilled into reservoir pay zones. During production, gas liberation from the oil phase occurs due to pressure decline in the wellbore. Thus, we expect multiphase flow in some sections of the wellbore. As a multi-phase/multi-component gas-oil mixture flows from the reservoir to the surface, pressure, temperature, composition, and liquid holdup distributions are interrelated. Modeling these multiphase flow parameters is important to design production strategies such as artificial lift procedures. A wellbore fluid flow model can also be used for pressure transient test analysis and interpretation. Considering heat exchange in the wellbore is important to compute fluid flow parameters accurately. Modeling multiphase fluid flow in the wellbore becomes more complicated due to heat transfer between the wellbore fluids and the surrounding formations. Due to mass, momentum, and energy exchange between the wellbore and the reservoir, the wellbore model should be coupled with a numerical reservoir model to simulate fluid flow accurately. This model should be non-isothermal to consider the effect of temperature. Our research shows that, in some cases, ignoring compositional effects may lead to errors in pressure profile prediction for the wellbore. Nearly all multiphase wellbore simulations are currently performed using the "black oil" approach. The primary objective of this study was to develop a non-isothermal wellbore simulator to model transient fluid flow and temperature and couple the model to a reservoir simulator called General Purpose Adaptive Simulator (GPAS). The coupled wellbore/reservoir simulator can be applied to steady state problems, such as production from, or injection to a reservoir as well as during transient phenomena such as well tests to accurately model wellbore effects. Fluid flow in the wellbore may be modeled either using the blackoil approach or the compositional approach, as required by the complexity of the fluids. The simulation results of the new model were compared with field data for pressure gradients and temperature distribution obtained from wireline conveyed pressure recorder and acoustic fluid level measurements for a gas/oil producer well during a buildup test. The model results are in good agreement with the field data. Our simulator gave us further insights into the wellbore dynamics that occur during transient problems such as phase segregation and counter-current multiphase flow. We show that neglecting these multiphase flow dynamics would lead to unreliable results in well testing analysis.

Book Abstract Journal in Earthquake Engineering

Download or read book Abstract Journal in Earthquake Engineering written by and published by . This book was released on 1993 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Reservoir Engineering

Download or read book Advanced Reservoir Engineering written by Tarek Ahmed and published by Elsevier. This book was released on 2011-03-15 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Reservoir Engineering offers the practicing engineer and engineering student a full description, with worked examples, of all of the kinds of reservoir engineering topics that the engineer will use in day-to-day activities. In an industry where there is often a lack of information, this timely volume gives a comprehensive account of the physics of reservoir engineering, a thorough knowledge of which is essential in the petroleum industry for the efficient recovery of hydrocarbons.Chapter one deals exclusively with the theory and practice of transient flow analysis and offers a brief but thorough hands-on guide to gas and oil well testing. Chapter two documents water influx models and their practical applications in conducting comprehensive field studies, widely used throughout the industry. Later chapters include unconventional gas reservoirs and the classical adaptations of the material balance equation.* An essential tool for the petroleum and reservoir engineer, offering information not available anywhere else* Introduces the reader to cutting-edge new developments in Type-Curve Analysis, unconventional gas reservoirs, and gas hydrates * Written by two of the industry's best-known and respected reservoir engineers

Book Wave Propagation in Drilling  Well Logging and Reservoir Applications

Download or read book Wave Propagation in Drilling Well Logging and Reservoir Applications written by Wilson C. Chin and published by John Wiley & Sons. This book was released on 2014-09-19 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave propagation is central to all areas of petroleum engineering, e.g., drilling vibrations, MWD mud pulse telemetry, swab-surge, geophysical ray tracing, ocean and current interactions, electromagnetic wave and sonic applications in the borehole, but rarely treated rigorously or described in truly scientific terms, even for a single discipline. Wilson Chin, an MIT and Caltech educated scientist who has consulted internationally, provides an integrated, comprehensive, yet readable exposition covering all of the cited topics, offering insights, algorithms and validated methods never before published. A must on every petroleum engineering bookshelf! In particular, the book: Delivers drillstring vibrations models coupling axial, torsional and lateral motions that predict rate-of-penetration, bit bounce and stick-slip as they depend on rock-bit interaction and bottomhole assembly properties, Explains why catastrophic lateral vibrations at the neutral point cannot be observed from the surface even in vertical wells, but providing a proven method to avoid them, Demonstrates why Fermat's "principle of least time" (used in geophysics) applies to non-dissipative media only, but using the "kinematic wave theory" developed at MIT, derives powerful methods applicable to general attenuative inhomogeneous media, Develops new approaches to mud acoustics and applying them to MWD telemetry modeling and strong transients in modern swab-surge applicagtions, Derives new algorithms for borehole geophysics interpretation, e.g., Rh and Rv in electromagnetic wave and permeability in Stoneley waveform analysis, and Outlines many more applications, e.g., wave loadings on offshore platforms, classical problems in wave propagation, and extensions to modern kinematic wave theory. These disciplines, important to all field-oriented activities, are not treated as finite element applications that are simply gridded, "number-crunched" and displayed, but as scientific disciplines deserving of clear explanation. General results are carefully motivated, derived and applied to real-world problems, with results demonstrating the importance and predictive capabilities of the new methods.

Book Phase Behavior

Download or read book Phase Behavior written by Curtis H. Whitson and published by Society of Petroleum Engineers. This book was released on 2000 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase Behavior provides the reader with the tools needed to solve problems requiring a description of phase behavior and specific pressure/volume/temperature (PVT) properties.