EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cooperative Sensing and Control with Unmanned Aerial Vehicles

Download or read book Cooperative Sensing and Control with Unmanned Aerial Vehicles written by John Patrick Tisdale and published by . This book was released on 2008 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cooperative Path Planning of Unmanned Aerial Vehicles

Download or read book Cooperative Path Planning of Unmanned Aerial Vehicles written by Antonios Tsourdos and published by John Wiley & Sons. This book was released on 2010-11-09 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in the area of cooperative systems, cooperative control and optimization particularly in the aerospace industry.

Book UAV Cooperative Decision and Control

Download or read book UAV Cooperative Decision and Control written by Tal Shima and published by SIAM. This book was released on 2009-01-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned aerial vehicles (UAVs) are increasingly used in military missions because they have the advantages of not placing human life at risk and of lowering operation costs via decreased vehicle weight. These benefits can be fully realized only if UAVs work cooperatively in groups with an efficient exchange of information. This book provides an authoritative reference on cooperative decision and control of UAVs and the means available to solve problems involving them.

Book Remote Sensing and Actuation Using Unmanned Vehicles

Download or read book Remote Sensing and Actuation Using Unmanned Vehicles written by Haiyang Chao and published by John Wiley & Sons. This book was released on 2012-08-28 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

Book Fault Tolerant Cooperative Control of Unmanned Aerial Vehicles

Download or read book Fault Tolerant Cooperative Control of Unmanned Aerial Vehicles written by Ziquan Yu and published by Springer Nature. This book was released on 2023-12-06 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the fault-tolerant cooperative control (FTCC) of multiple unmanned aerial vehicles (multi-UAVs). It provides systematic and comprehensive descriptions of FTCC issues in multi-UAVs concerning faults, external disturbances, strongly unknown nonlinearities, and input saturation. Further, it addresses FTCC design from longitudinal motions to attitude motions, and outer-loop position motions of multi-UAVs. The book’s detailed control schemes can be used to enhance the flight safety of multi-UAVs. As such, the book offers readers an in-depth understanding of UAV safety in cooperative/formation flight and corresponding design methods. The FTCC methods presented here can also provide guidelines for engineers to improve the safety of aerospace engineering systems. The book offers a valuable asset for scientists and researchers, aerospace engineers, control engineers, lecturers and teachers, and graduates and undergraduates in the system and control community, especially those working in the field of UAV cooperation and multi-agent systems.

Book Cooperative Control of UAVs for Localization of Intermittently Emitting Mobile Targets

Download or read book Cooperative Control of UAVs for Localization of Intermittently Emitting Mobile Targets written by and published by . This book was released on 2009 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compared with a single platform, cooperative autonomous unmanned aerial vehicles (UAVs) offer efficiency and robustness in performing complex tasks. Focusing on ground mobile targets that intermittently emit radio frequency signals, this paper presents a decentralized control architecture for multiple UAVs, equipped only with rudimentary sensors, to search, detect, and locate targets over large areas. The proposed architecture has in its core a decision logic which governs the state of operation for each UAV based on sensor readings and communicated data. To support the findings, extensive simulation results are presented, focusing primarily on two success measures that the UAVs seek to minimize: overall time to search for a group of targets and the final target localization error achieved. The results of the simulations have provided support for hardware flight tests.

Book Sensing and Control for Autonomous Vehicles

Download or read book Sensing and Control for Autonomous Vehicles written by Thor I. Fossen and published by Springer. This book was released on 2017-05-26 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.

Book Recent Advances in Research on Unmanned Aerial Vehicles

Download or read book Recent Advances in Research on Unmanned Aerial Vehicles written by Fariba Fahroo and published by Springer. This book was released on 2013-04-10 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: A team of launched and coordinated Unmanned aerial vehicles (UAVs), requires advanced technologies in sensing, communication, computing, and control to improve their intelligence and robustness towards autonomous operations. To enhance reliability, robustness, and mission capability of a team of UAVs, a system-oriented and holistic approach is desirable in which all components and subsystems are considered in terms of their roles and impact on the entire system. This volume aims to summarize the recent progress, identify challenges and opportunities, and develop new methodologies and systems on coordinated UAV control. A group of experts working in this area have contributed to this volume in several related aspects of autonomous control of networked UAVs. Their papers introduce new control methodologies, algorithms, and systems that address several important issues in developing intelligent, autonomous or semi-autonomous, networked systems for the next generation of UAVs. The papers share a common focus on improved coordination of the members of the networked system to accomplish a common mission, to achieve heightened capability in system reconfiguration to compensate for lost members or connections, and to enhance robustness against terrain complications and attacks.

Book Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles

Download or read book Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles written by and published by . This book was released on 2004 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen rapidly growing interest in the development of networks of multiple unmanned aerial vehicles (UAVs), as aerial sensor networks for the purpose of coordinated monitoring, surveillance, and rapid emergency response. This has triggered a great deal of research in higher levels of planning and control, including collaborative sensing and exploration, synchronized motion planning, and formation or cooperative control. In this paper, we describe our recently developed experimental testbed at the University of Pennsylvania, which consists of multiple, fixed-wing UAVs. We describe the system architecture, software and hardware components, and overall system integration. We then derive high-fidelity models that are validated with hardware-in-the-loop simulations and actual experiments. Our models are hybrid, capturing not only the physical dynamics of the aircraft, but also the mode switching logic that supervises lower level controllers. We conclude with a description of cooperative control experiments involving two fixed-wing UAVs.

Book Wireless Communication Networks Supported by Autonomous UAVs and Mobile Ground Robots

Download or read book Wireless Communication Networks Supported by Autonomous UAVs and Mobile Ground Robots written by Hailong Huang and published by Academic Press. This book was released on 2022-01-03 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wireless Communication Networks Supported by Autonomous UAVs and Mobile Ground Robots covers wireless sensor networks and cellular networks. For wireless sensor networks, the book presents approaches using mobile robots or UAVs to collect sensory data from sensor nodes. For cellular networks, it discusses the approaches to using UAVs to work as aerial base stations to serve cellular users. In addition, the book covers the challenges involved in these two networks, existing approaches (e.g., how to use the public transportation vehicles to play the role of mobile sinks to collect sensory data from sensor nodes), and potential methods to address open questions. - Gives a comprehensive understanding of the development of mobile robot-supported wireless communication approaches - Provides the latest approaches of mobile robot-supported wireless communication, including scheduling approaches with multiple robots and the online and reactive navigation algorithm - Covers interesting research scenarios that include the system model, problem statement, solution and results so that readers will be able to design their own system - Presents unresolved research issues and future research directions

Book Safety and Reliability in Cooperating Unmanned Aerial Systems

Download or read book Safety and Reliability in Cooperating Unmanned Aerial Systems written by Camille Alain Rabbath and published by World Scientific. This book was released on 2010 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Introduction. 1.1. Unmanned aerial systems. 1.2. Cooperative control. 1.3. Contingencies -- 2. Health management for the individual vehicle : a review. 2.1. Passive and active fault-tolerant control systems. 2.2. Fault/failure detection and diagnosis. 2.3. Control reconfiguration. 2.4. FTC and FDD techniques for MAV and SUAV -- 3. Health monitoring and adaptation for UAS formations. 3.1. Models of vehicle dynamics, flight control, and faults. 3.2. Formation control. 3.3. Observer-based decentralized abrupt fault detector. 3.4. Signal-based decentralized non-abrupt fault detector. 3.5. UAV command adaptation. 3.6. Simulations and experiments -- 4. Decision making and health management for cooperating UAS. 4.1. Coordinated rendezvous of UAS formations. 4.2. Cooperation despite information flow faults. 4.3. Numerical simulations. 4.4. Distributed and parallel implementation of optimization algorithms

Book Flying Ad Hoc Networks

Download or read book Flying Ad Hoc Networks written by Jingjing Wang and published by Springer Nature. This book was released on 2022-02-10 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relying on unmanned autonomous flight control programs, unmanned aerial vehicles (UAVs) equipped with radio communication devices have been actively developed around the world. Given their low cost, flexible maneuvering and unmanned operation, UAVs have been widely used in both civilian operations and military missions, including environmental monitoring, emergency communications, express distribution, even military surveillance and attacks, for example. Given that a range of standards and protocols used in terrestrial wireless networks are not applicable to UAV networks, and that some practical constraints such as battery power and no-fly zone hinder the maneuverability capability of a single UAV, we need to explore advanced communication and networking theories and methods for the sake of supporting future ultra-reliable and low-latency applications. Typically, the full potential of UAV network’s functionalities can be tapped with the aid of the cooperation of multiple drones relying on their ad hoc networking, in-network communications and coordinated control. Furthermore, some swarm intelligence models and algorithms conceived for dynamic negotiation, path programming, formation flight and task assignment of multiple cooperative drones are also beneficial in terms of extending UAV’s functionalities and coverage, as well as of increasing their efficiency. We call the networking and cooperation of multiple drones as the terminology ‘flying ad hoc network (FANET)’, and there indeed are numerous new challenges to be overcome before the idespread of so-called heterogeneous FANETs. In this book, we examine a range of technical issues in FANETs, from physical-layer channel modeling to MAC-layer resource allocation, while also introducing readers to UAV aided mobile edge computing techniques.

Book Unmanned Aerial Vehicle Applications over Cellular Networks for 5G and Beyond

Download or read book Unmanned Aerial Vehicle Applications over Cellular Networks for 5G and Beyond written by Hongliang Zhang and published by Springer Nature. This book was released on 2019-12-13 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses how to plan the time-variant placements of the UAVs served as base station (BS)/relay, which is very challenging due to the complicated 3D propagation environments, as well as many other practical constraints such as power and flying speed. Spectrum sharing with existing cellular networks is also investigated in this book. The emerging unmanned aerial vehicles (UAVs) have been playing an increasing role in the military, public, and civil applications. To seamlessly integrate UAVs into future cellular networks, this book will cover two main scenarios of UAV applications as follows. The first type of applications can be referred to as UAV Assisted Cellular Communications. Second type of application is to exploit UAVs for sensing purposes, such as smart agriculture, security monitoring, and traffic surveillance. Due to the limited computation capability of UAVs, the real-time sensory data needs to be transmitted to the BS for real-time data processing. The cellular networks are necessarily committed to support the data transmission for UAVs, which the authors refer to as Cellular assisted UAV Sensing. To support real-time sensing streaming, the authors design joint sensing and communication protocols, develop novel beamforming and estimation algorithms, and study efficient distributed resource optimization methods. This book targets signal processing engineers, computer and information scientists, applied mathematicians and statisticians, as well as systems engineers to carve out the role that analytical and experimental engineering has to play in UAV research and development. Undergraduate students, industry managers, government research agency workers and general readers interested in the fields of communications and networks will also want to read this book.

Book UAV or Drones for Remote Sensing Applications

Download or read book UAV or Drones for Remote Sensing Applications written by Felipe Gonzalez Toro and published by MDPI. This book was released on 2018-11-23 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "UAV or Drones for Remote Sensing Applications" that was published in Sensors

Book Time Critical Cooperative Control of Autonomous Air Vehicles

Download or read book Time Critical Cooperative Control of Autonomous Air Vehicles written by Isaac Kaminer and published by Butterworth-Heinemann. This book was released on 2017-08-02 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-Critical Cooperative Control of Autonomous Air Vehicles presents, in an easy-to-read style, the latest research conducted in the industry, while also introducing a set of novel ideas that illuminate a new approach to problem-solving. The book is virtually self-contained, giving the reader a complete, integrated presentation of the different concepts, mathematical tools, and control solutions needed to tackle and solve a number of problems concerning time-critical cooperative control of UAVs. By including case studies of fixed-wing and multirotor UAVs, the book effectively broadens the scope of application of the methodologies developed. This theoretical presentation is complemented with the results of flight tests with real UAVs, and is an ideal reference for researchers and practitioners from academia, research labs, commercial companies, government workers, and those in the international aerospace industry. - Addresses important topics related to time-critical cooperative control of UAVs - Describes solutions to the problems rooted in solid dynamical systems theory - Applies the solutions developed to fixed-wing and multirotor UAVs - Includes the results of field tests with both classes of UAVs

Book Cooperative Mobile Sensing Networks

Download or read book Cooperative Mobile Sensing Networks written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A cooperative control architecture is presented that allows a fleet of Unmanned Air Vehicles (UAVs) to collect data in a parallel, coordinated and optimal manner. The architecture is designed to react to a set of unpredictable events thereby allowing data collection to continue in an optimal manner.

Book Autonomous Safety Control of Flight Vehicles

Download or read book Autonomous Safety Control of Flight Vehicles written by Xiang Yu and published by CRC Press. This book was released on 2021-02-12 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerospace vehicles are by their very nature a crucial environment for safety-critical systems. By virtue of an effective safety control system, the aerospace vehicle can maintain high performance despite the risk of component malfunction and multiple disturbances, thereby enhancing aircraft safety and the probability of success for a mission. Autonomous Safety Control of Flight Vehicles presents a systematic methodology for improving the safety of aerospace vehicles in the face of the following occurrences: a loss of control effectiveness of actuators and control surface impairments; the disturbance of observer-based control against multiple disturbances; actuator faults and model uncertainties in hypersonic gliding vehicles; and faults arising from actuator faults and sensor faults. Several fundamental issues related to safety are explicitly analyzed according to aerospace engineering system characteristics; while focusing on these safety issues, the safety control design problems of aircraft are studied and elaborated on in detail using systematic design methods. The research results illustrate the superiority of the safety control approaches put forward. The expected reader group for this book includes undergraduate and graduate students but also industry practitioners and researchers. About the Authors: Xiang Yu is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include safety control of aerospace engineering systems, guidance, navigation, and control of unmanned aerial vehicles. Lei Guo, appointed as "Chang Jiang Scholar Chair Professor", is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include anti-disturbance control and filtering, stochastic control, and fault detection with their applications to aerospace systems. Youmin Zhang is a Professor in the Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Québec, Canada. His research interests include fault diagnosis and fault-tolerant control, and cooperative guidance, navigation, and control (GNC) of unmanned aerial/space/ground/surface vehicles. Jin Jiang is a Professor in the Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada. His research interests include fault-tolerant control of safety-critical systems, advanced control of power plants containing non-traditional energy resources, and instrumentation and control for nuclear power plants.