EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Conversion and Analysis of a Homogeneous Charge Compression Ignition Engine

Download or read book Conversion and Analysis of a Homogeneous Charge Compression Ignition Engine written by Patrick Michael Ferri and published by . This book was released on 2004 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A 1.9-liter Volkswagen turbo direct injection diesel engine was modified and tested in Homogeneous Charge Compression Ignition (HCCI) mode.

Book Design Considerations  Modeling  and Analysis of Micro homogeneous Charge Compression Ignition Combustion Free piston Engines

Download or read book Design Considerations Modeling and Analysis of Micro homogeneous Charge Compression Ignition Combustion Free piston Engines written by Hans Thomas Aichlmayr and published by . This book was released on 2002 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Control and Robustness Analysis of Homogeneous Charge Compression Ignition Using Exhaust Recompression

Download or read book Control and Robustness Analysis of Homogeneous Charge Compression Ignition Using Exhaust Recompression written by Hsien-Hsin Liao and published by Stanford University. This book was released on 2011 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been an enormous global research effort to alleviate the current and projected environmental consequences incurred by internal combustion (IC) engines, the dominant propulsion systems in ground vehicles. Two technologies have the potential to improve the efficiency and emissions of IC engines in the near future: variable valve actuation (VVA) and homogeneous charge compression ignition (HCCI). IC engines equipped with VVA systems are proven to show better performance by adjusting the valve lift and timing appropriately. An electro-hydraulic valve system (EHVS) is a type of VVA system that possesses full flexibility, i.e., the ability to change the valve lift and timing independently and continuously, making it an ideal rapid prototyping tool in a research environment. Unfortunately, an EHVS typically shows a significant response time delay that limits the achievable closed-loop bandwidth and, as a result, shows poor tracking performance. In this thesis, a control framework that includes system identification, feedback control design, and repetitive control design is presented. The combined control law shows excellent performance with a root-mean-square tracking error below 40 [Mu]m over a maximum valve lift of 4 mm. A stability analysis is also provided to show that the mean tracking error converges to zero asymptotically with the combined control law. HCCI, the other technology presented in this thesis, is a combustion strategy initiated by compressing a homogeneous air-fuel mixture to auto-ignition, therefore, ignition occurs at multiple points inside the cylinder without noticeable flame propagation. The result is rapid combustion with low peak in-cylinder temperature, which gives HCCI improved efficiency and reduces NOx formation. To initiate HCCI with a typical compression ratio, the sensible energy of the mixture needs to be high compared to a spark ignited (SI) strategy. One approach to achieve this, called recompression HCCI, is by closing the exhaust valve early to trap a portion of the exhaust gas in the cylinder. Unlike a SI or Diesel strategy, HCCI lacks an explicit combustion trigger, as autoignition is governed by chemical kinetics. Therefore, the thermo-chemical conditions of the air-fuel mixture need to be carefully controlled for HCCI to occur at the desired timing. Compounding this challenge in recompression HCCI is the re-utilization of the exhaust gas which creates cycle-to-cycle coupling. Furthermore, the coupling characteristics can change drastically around different operating points, making combustion timing control difficult across a wide range of conditions. In this thesis, a graphical analysis examines the in-cylinder temperature dynamics of recompression HCCI and reveals three qualitative types of temperature dynamics. With this insight, a switching linear model is formulated by combining three linear models: one for each of the three types of temperature dynamics. A switching controller that is composed of three local linear feedback controllers can then be designed based on the switching model. This switching model/control formulation is tested on an experimental HCCI testbed and shows good performance in controlling the combustion timing across a wide range. A semi-definite program is formulated to find a Lyapunov function for the switching model/control framework and shows that it is stable. As HCCI is dictated by the in-cylinder thermo-chemical conditions, there are further concerns about the robustness of HCCI, i.e., the boundedness of the thermo-chemical conditions with uncertainty existing in the ambient conditions and in the engine's own characteristics due to aging. To assess HCCI's robustness, this thesis presents a linear parameter varying (LPV) model that captures the dynamics of recompression HCCI and possesses an elegant model structure that is more amenable to analysis. Based on this model, a recursive algorithm using convex optimization is formulated to generate analytical statements about the boundedness of the in-cylinder thermo-chemical conditions. The bounds generated by the algorithm are also shown to relate well to the data from the experimental testbed.

Book Analysis of Homogeneous Charge Compression Ignition Engine with Emphasis on Combustion Timing and Reaction Rate

Download or read book Analysis of Homogeneous Charge Compression Ignition Engine with Emphasis on Combustion Timing and Reaction Rate written by Arunim Bhattacharya and published by . This book was released on 2017 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: HCCI engines are a class of engines which use high compression ratio to ignite a charge of air-fuel mixture, essentially eliminating the need for spark plugs. This contrasts with diesel engines (although HCCI can be used for diesel engines) where the fuel is injected near the top dead center of the compression stroke regime. Gasoline HCCI engines are of significance because, it attempts to improve the characteristics of the engine for example the thermal efficiency. High compression ratio comes with higher thermal efficiency, yet the peak temperature remains low enough to have low production rates of harmful oxides of nitrogen and formation of soot. However, there are certain challenges associated with such type of engine, one of which and perhaps the most important of all is how to control the combustion rate. Flow dynamics and chemical-kinetics analysis, is essential to predict combustion timing, duration, and rate. The objective of this study is to analyze a HCCI engine using, simulation analysis models including a three-dimensional CFD simulation model. Simulation analysis is carried out using a generic HCCI engine, initially with simplified chemical kinetics, and then using detailed chemical kinetics and using RANS turbulence CFD model. A sensitivity analysis of the effect of RPM on the combustion time, burn duration, heat release, efficiency and emission concentration are carried out.

Book Assessment of Fuel Economy Technologies for Light Duty Vehicles

Download or read book Assessment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2011-06-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Book HCCI and CAI Engines for the Automotive Industry

Download or read book HCCI and CAI Engines for the Automotive Industry written by Hua Zhao and published by CRC Press. This book was released on 2007-09-10 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.

Book Chemical  Biological and Environmental Engineering   Proceedings of the International Conference on Cbee 2009

Download or read book Chemical Biological and Environmental Engineering Proceedings of the International Conference on Cbee 2009 written by Li Kai and published by World Scientific. This book was released on 2010 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Held in Singapore from 9 to 11 October 2009, the 2009 International Conference on Chemical, Biological and Environmental Engineering (CBEE 2009) aims to provide a platform for researchers, engineers, academicians as well as industrial professionals from all over the world to present their research and development activities in chemical, biological and environmental engineering. Conference delegates will also have the opportunity to exchange new ideas and application experiences, establish business or research relations and find global partners for future collaboration. Sample Chapter(s). Chapter 1: The Future of Biopharmaceutics'' Production (92 KB). Contents: Study on Pyrolysis Characteristics of Electronic Waste (J Sun et al.); Application of Noise Mapping on Environmental Management (K-T Tsai et al.); Characteristics and Transport Properties of Two Modified Zero Valent Iron (Y-H Lin et al.); Synthesis of Visible Light Active N-Doped Titania Photocatalyst (C Kusumawardani et al.); CFD-PBM Modeling of Vertical Bubbly Flows (M R Rahimi & H Karimi); Hydrotalcite-Like Synthesis Using Magnesium from Brine Water (E Heraldy et al.); Cement/Activated-Carbon Solidification/Stabilization Treatment of Nitrobenzene (Z Su et al.); Investigation of Fish Species Biodiversity in Haraz River (I Piri et al.); Risk Assessment of Fluoride in Indian Context (V Chaudhary & M Kumar); Light Transmission In Fluidized Bed (E Shahbazali et al.); Drying of Mushroom Using a Solar Tunnel Dryer (M A Basunia et al.); and other papers. Readership: Researchers, engineers, academicians and industrial professionals in related fields of chemical, biological and environmental engineering.

Book Homogeneous Charge Compression Ignition Control by the Use of Plasmatron Fuel Converter Technology

Download or read book Homogeneous Charge Compression Ignition Control by the Use of Plasmatron Fuel Converter Technology written by Leslie Bromberg and published by . This book was released on 2001 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous Charge Ignition Compression (HCCI) operation has emissions and efficiency advantages over both spark ignition and compression ignition operation. The main difficulty with HCCI is control of timing. The possible uses of plasmatron fuel converters for controlling HCCI engines are described.

Book Analysis of Stratified Charge Operation and Negative Valve Overlap Operation Using Direct Fuel Injection in Homogeneous Charge Compression Ignition Engines

Download or read book Analysis of Stratified Charge Operation and Negative Valve Overlap Operation Using Direct Fuel Injection in Homogeneous Charge Compression Ignition Engines written by Tanet Aroonsrisopon and published by . This book was released on 2006 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Study of Homogeneous Charge Compression Ignition Combustion in a H2 fueled Engine

Download or read book Numerical Study of Homogeneous Charge Compression Ignition Combustion in a H2 fueled Engine written by Bharath Dodde Gowda and published by . This book was released on 2011 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Study of homogeneous charge compression ignition  HCCI  combustion and emission characteristics in a multi cylinder engine

Download or read book Study of homogeneous charge compression ignition HCCI combustion and emission characteristics in a multi cylinder engine written by Jacek Waldemar Misztal and published by . This book was released on 2008 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Control of a Multicylinder Homogeneous Charge Compression Ignition Engine

Download or read book Control of a Multicylinder Homogeneous Charge Compression Ignition Engine written by William Lee Gans and published by . This book was released on 2003 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Combustion in Homogeneous Charge Compression Ignition Engines

Download or read book Combustion in Homogeneous Charge Compression Ignition Engines written by Daniel Lee Flowers and published by . This book was released on 2001 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Homogeneous Charge Compression Ignition  HCCI  Engines

Download or read book Homogeneous Charge Compression Ignition HCCI Engines written by Fuquan Zhao and published by SAE International. This book was released on 2003-01-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems. A profound increase in the level of research and development of this technology has occurred in the last decade. This book gathers contributions from experts in both industry and academia, providing a basic introduction to the state-of-the-art of HCCI technology, a critical review of current HCCI research and development efforts, and perspective for the future. Chapters cover: Gasoline-Fueled HCCI Engines; Diesel-Fueled HCCI Engines; Alternative Fuels and Fuel Additives for HCCI Engines; HCCI Control and Operating Range Extension; Kinetics of HCCI Combustion; HCCI Engine Modeling Approaches.In addition to the extensive overview of terminology, physical processes, and future needs, each chapter also features select SAE papers (a total of 41 are included in the book), as well as a comprehensive list of references related to the subjects. Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues provides a valuable base of information for those interested in learning about this rapidly-progressing technology which has the potential to enhance fuel economy and reduce emissions.