EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Convection in Fluids

    Book Details:
  • Author : Radyadour Kh. Zeytounian
  • Publisher : Springer Science & Business Media
  • Release : 2009-07-21
  • ISBN : 9048124336
  • Pages : 396 pages

Download or read book Convection in Fluids written by Radyadour Kh. Zeytounian and published by Springer Science & Business Media. This book was released on 2009-07-21 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph, entirely devoted to “Convection in Fluids”, presents a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Bénard problem - heated from below) and the effect of free surface deformation are taken into account. In the case of atmospheric thermal convection, the Coriolis force and stratification effects are also considered. This volume gives a rational and analytical analysis of the above mentioned physical effects on the basis of the full unsteady Navier-Stokes and Fourier (NS-F) equations - for a Newtonian compressible viscous and heat-conducting fluid - coupled with the associated initials (at initial time), boundary (lower-at the solid plane) and free surface (upper-in contact with ambiant air) conditions. This, obviously, is not an easy but a necessary task if we have in mind a rational modelling process, and work within a numerically coherent simulation on a high speed computer.

Book Convection in Rotating Fluids

Download or read book Convection in Rotating Fluids written by B.M. Boubnov and published by Springer. This book was released on 1995-02-28 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial inhomogeneity of heating of fluids in the gravity field is the cause of all motions in nature: in the atmosphere and the oceans on Earth, in astrophysical and planetary objects. All natural objects rotate and convective motions in rotating fluids are of interest in many geophysical and astrophysical phenomena. In many industrial applications, too (crystal growth, semiconductor manufacturing), heating and rotation are the main mechanisms defining the structure and quality of the material. Depending on the geometry of the systems and the mutual orientation of temperature and gravity field, a variety of phenomena will arise in rotating fluids, such as regular and oscillating waves, intensive solitary vortices and regular vortex grids, interacting vortices and turbulent mixing. In this book the authors elucidate the physical essence of these phenomena, determining and classifying flow regimes in the space of similarity numbers. The theoretical and computational results are presented only when the results help to explain basic qualitative motion characteristics. The book will be of interest to researchers and graduate students in fluid mechanics, meteorology, oceanography and astrophysics, crystallography, heat and mass transfer.

Book Biophysical Ecology

    Book Details:
  • Author : D. M. Gates
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461260248
  • Pages : 631 pages

Download or read book Biophysical Ecology written by D. M. Gates and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to make analytical methods available to students of ecology. The text deals with concepts of energy exchange, gas exchange, and chemical kinetics involving the interactions of plants and animals with their environments. The first four chapters are designed to show the applications of biophysical ecology in a preliminary, sim plified manner. Chapters 5-10, treating the topics of radiation, convec tion, conduction, and evaporation, are concerned with the physical environment. The spectral properties of radiation and matter are thoroughly described, as well as the geometrical, instantaneous, daily, and annual amounts of both shortwave and longwave radiation. Later chapters give the more elaborate analytical methods necessary for the study of photosynthesis in plants and energy budgets in animals. The final chapter describes the temperature responses of plants and animals. The discipline of biophysical ecology is rapidly growing, and some important topics and references are not included due to limitations of space, cost, and time. The methodology of some aspects of ecology is illustrated by the subject matter of this book. It is hoped that future students of the subject will carry it far beyond its present status. Ideas for advancing the subject matter of biophysical ecology exceed individual capacities for effort, and even today, many investigators in ecology are studying subjects for which they are inadequately prepared. The potential of modern science, in the minds and hands of skilled investigators, to of the interactions of organisms with their advance our understanding environment is enormous.

Book Convection in Rotating Fluids

Download or read book Convection in Rotating Fluids written by B.M. Boubnov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial inhomogeneity of heating of fluids in the gravity field is the cause of all motions in nature: in the atmosphere and the oceans on Earth, in astrophysical and planetary objects. All natural objects rotate and convective motions in rotating fluids are of interest in many geophysical and astrophysical phenomena. In many industrial applications, too (crystal growth, semiconductor manufacturing), heating and rotation are the main mechanisms defining the structure and quality of the material. Depending on the geometry of the systems and the mutual orientation of temperature and gravity field, a variety of phenomena will arise in rotating fluids, such as regular and oscillating waves, intensive solitary vortices and regular vortex grids, interacting vortices and turbulent mixing. In this book the authors elucidate the physical essence of these phenomena, determining and classifying flow regimes in the space of similarity numbers. The theoretical and computational results are presented only when the results help to explain basic qualitative motion characteristics. The book will be of interest to researchers and graduate students in fluid mechanics, meteorology, oceanography and astrophysics, crystallography, heat and mass transfer.

Book Convective Flow and Heat Transfer from Wavy Surfaces

Download or read book Convective Flow and Heat Transfer from Wavy Surfaces written by Aroon Shenoy and published by CRC Press. This book was released on 2016-10-14 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media, and Nanofluids addresses the wavy irregular surfaces in heat transfer devices. Fluid flow and heat transfer studies from wavy surfaces have received attention, since they add complexity and require special mathematical techniques. This book considers the flow and heat transfer characteristics from wavy surfaces, providing an understanding of convective behavioral changes.

Book Hybrid Nanofluids for Convection Heat Transfer

Download or read book Hybrid Nanofluids for Convection Heat Transfer written by Hafiz Muhammad Ali and published by Academic Press. This book was released on 2020-05-15 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids Reviews parameter selection and property measurement techniques for thermal performance calibration Explores the use of predictive mathematical techniques for experimental properties

Book Convection in Porous Media

    Book Details:
  • Author : D.A. Nield
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1475721757
  • Pages : 418 pages

Download or read book Convection in Porous Media written by D.A. Nield and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we have tried to provide a user-friendly introduction to the topic of convection in porous media. We have assumed that the reader is conversant with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained. Only routine classical mathematics is employed. We hope that the book will be useful both as a review (for reference) and as a tutorial work (suitable as a textbook in a graduate course or seminar). This book brings into perspective the voluminous research that has been performed during the last two decades. The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment. Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal. Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches.

Book Convective Flow and Heat Transfer from Wavy Surfaces

Download or read book Convective Flow and Heat Transfer from Wavy Surfaces written by Aroon Shenoy and published by CRC Press. This book was released on 2016-10-14 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media, and Nanofluids addresses the wavy irregular surfaces in heat transfer devices. Fluid flow and heat transfer studies from wavy surfaces have received attention, since they add complexity and require special mathematical techniques. This book considers the flow and heat transfer characteristics from wavy surfaces, providing an understanding of convective behavioral changes.

Book Survey of Heat Transfer to Near critical Fluids

Download or read book Survey of Heat Transfer to Near critical Fluids written by Robert C. Hendricks and published by . This book was released on 1970 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Free Convection in Fluids Having a Volume Heat Source

Download or read book Free Convection in Fluids Having a Volume Heat Source written by and published by . This book was released on 1954 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Convection

    Book Details:
  • Author : Marcello Lappa
  • Publisher : John Wiley & Sons
  • Release : 2009-11-05
  • ISBN : 0470749997
  • Pages : 690 pages

Download or read book Thermal Convection written by Marcello Lappa and published by John Wiley & Sons. This book was released on 2009-11-05 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Convection - Patterns, Stages of Evolution and Stability Behavior provides the reader with an ensemble picture of the subject, illustrating the state-of-the-art and providing the researchers from universities and industry with a basis on which they are able to estimate the possible impact of a variety of parameters. Unlike earlier books on the subject, the heavy mathematical background underlying and governing the behaviors illustrated in the text are kept to a minimum. The text clarifies some still unresolved controversies pertaining to the physical nature of the dominating driving force responsible for asymmetric/oscillatory convection in various natural phenomena and/or technologically important processes and can help researchers in elaborating and validating new, more complex models, in accelerating the current trend towards predictable and reproducible natural phenomena and in establishing an adequate scientific foundation to industrial processes. Thermal Convection - Patterns, Stages of Evolution and Stability Behavior is intended as a useful reference guide for specialists in disciplines such as the metallurgy and foundry field and researchers and scientists who are now coordinating their efforts to improve the quality of semiconductor or macromolecular crystals. The text may also be of use to organic chemists and materials scientists, atmosphere and planetary physicists, as well as an advanced level text for students taking part in courses on the physics of fluids, fluid mechanics, the behavior and evolution of non-linear systems, environmental phenomena and materials engineering.

Book The Role of Convection and Fluid Flow in Solidification and Crystal Growth

Download or read book The Role of Convection and Fluid Flow in Solidification and Crystal Growth written by D. T. J. Hurle and published by Elsevier. This book was released on 2014-12-01 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physicochemical Hydrodynamics: The Role of Convection and Fluid Flow in Solidification and Crystal Growth focuses on the processes, methodologies, reactions, and approaches involved in solidification and crystal growth brought about by convection and fluid flow. The selection first offers information on the techniques of crystal growth, convection in Czochralski growth melts, and Marangoni effects in crystal growth melts. Discussions focus on crystal growth under reduced gravity, Marangoni effects in growth from a crucible, thermocapillary convection in floating zones, near-field flow, Czochralski bulk flow, and melt, solution, and vapor growth. The text then examines the effect of convective flow on morphological stability and time-dependent natural convection in crystal growth systems. The manuscript elaborates on the effects of fluid flow on the solidification of industrial castings and ingots and application of holographic interferometry to hydrodynamic phenomena in crystal growth. Topics include effects of fluid flow on crystal structure, importance of macrosegregation defects in castings, value of convection in crystal growth, and occurrence of thermal oscillations in fluids. The selection is a dependable reference for readers interested in the role of convection and fluid flow in solidification and crystal growth.

Book Convection in Fluids

    Book Details:
  • Author : Radyadour Kh. Zeytounian
  • Publisher : Springer
  • Release : 2009-08-29
  • ISBN : 9789048124527
  • Pages : 396 pages

Download or read book Convection in Fluids written by Radyadour Kh. Zeytounian and published by Springer. This book was released on 2009-08-29 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph, entirely devoted to “Convection in Fluids”, presents a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Bénard problem - heated from below) and the effect of free surface deformation are taken into account. In the case of atmospheric thermal convection, the Coriolis force and stratification effects are also considered. This volume gives a rational and analytical analysis of the above mentioned physical effects on the basis of the full unsteady Navier-Stokes and Fourier (NS-F) equations - for a Newtonian compressible viscous and heat-conducting fluid - coupled with the associated initials (at initial time), boundary (lower-at the solid plane) and free surface (upper-in contact with ambiant air) conditions. This, obviously, is not an easy but a necessary task if we have in mind a rational modelling process, and work within a numerically coherent simulation on a high speed computer.

Book Heat and Mass Transfer

    Book Details:
  • Author : Rajendra Karwa
  • Publisher : Springer Nature
  • Release : 2020-06-18
  • ISBN : 981153988X
  • Pages : 1162 pages

Download or read book Heat and Mass Transfer written by Rajendra Karwa and published by Springer Nature. This book was released on 2020-06-18 with total page 1162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis will be especially visible in the chapters on convective heat transfer. Emphasis is also laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers mathematical modeling of the air heater. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. A number of application-based examples have been incorporated where applicable. The end-of-chapter exercise problems are supplemented with stepwise answers. Though the book has been primarily designed to serve as a complete textbook for undergraduate and graduate students of mechanical engineering, it will also be useful for students of chemical, aerospace, automobile, production, and industrial engineering streams. The book fully covers the topics of heat transfer coursework and can also be used as an excellent reference for students preparing for competitive graduate examinations.

Book An Introduction to Fluid Mechanics and Heat Transfer

Download or read book An Introduction to Fluid Mechanics and Heat Transfer written by J. M. Kay and published by Cambridge University Press. This book was released on 1975-01-09 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1975 as the third edition of a 1957 original, this book presents the fundamental ideas of fluid flow, viscosity, heat conduction, diffusion, the energy and momentum principles, and the method of dimensional analysis. These ideas are subsequently developed in terms of their important practical applications, such as flow in pipes and channels, pumps, compressors and heat exchangers. Later chapters deal with the equation of fluid motion, turbulence and the general equations of forced convection. The final section discusses special problems in process engineering, including compressible flow in pipes, solid particles in fluid flow, flow through packed beds, condensation and evaporation. This book will be of value to anyone with an interest the wider applications of fluid mechanics and heat transfer.

Book Micropolar Fluids

Download or read book Micropolar Fluids written by Grzegorz Lukaszewicz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micropolar fluids are fluids with microstructure. They belong to a class of fluids with nonsymmetric stress tensor that we shall call polar fluids, and include, as a special case, the well-established Navier-Stokes model of classical fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The model of micropolar fluids introduced in [65] by C. A. Eringen is worth studying as a very well balanced one. First, it is a well-founded and significant generalization of the classical Navier-Stokes model, covering, both in theory and applications, many more phenomena than the classical one. Moreover, it is elegant and not too complicated, in other words, man ageable to both mathematicians who study its theory and physicists and engineers who apply it. The main aim of this book is to present the theory of micropolar fluids, in particular its mathematical theory, to a wide range of readers. The book also presents two applications of micropolar fluids, one in the theory of lubrication and the other in the theory of porous media, as well as several exact solutions of particular problems and a numerical method. We took pains to make the presentation both clear and uniform.

Book Convective Heat Transfer

Download or read book Convective Heat Transfer written by I. Pop and published by Elsevier. This book was released on 2001-02-23 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in studying the phenomena of convective heat and mass transfer between an ambient fluid and a body which is immersed in it stems both from fundamental considerations, such as the development of better insights into the nature of the underlying physical processes which take place, and from practical considerations, such as the fact that these idealised configurations serve as a launching pad for modelling the analogous transfer processes in more realistic physical systems. Such idealised geometries also provide a test ground for checking the validity of theoretical analyses. Consequently, an immense research effort has been expended in exploring and understanding the convective heat and mass transfer processes between a fluid and submerged objects of various shapes. Among several geometries which have received considerable attention are plates, circular and elliptical cylinders, and spheres, although much information is also available for some other bodies, such as corrugated surfaces or bodies of relatively complicated shapes. The book is a unified progress report which captures the spirit of the work in progress in boundary-layer heat transfer research and also identifies potential difficulties and areas for further study. In addition, this work provides new material on convective heat and mass transfer, as well as a fresh look at basic methods in heat transfer. Extensive references are included in order to stimulate further studies of the problems considered. A state-of-the-art picture of boundary-layer heat transfer today is presented by listing and commenting also upon the most recent successful efforts and identifying the needs for further research.