EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis and Characterization of One dimensional Nanomaterials for Thermoelectrics and Gas Sensors

Download or read book Synthesis and Characterization of One dimensional Nanomaterials for Thermoelectrics and Gas Sensors written by Miluo Zhang and published by . This book was released on 2014 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrospinning and galvanic displacement reaction were combining to synthesize ultra-long metal chalcogenide nanofibers with controlled dimensions, morphologies, and compositions. The structure, electrical and thermoelectric properties were systematically examined to understand relationships between nanofiber structures and their resulting thermoelectric performance.

Book Controlled Growth of Nanomaterials

Download or read book Controlled Growth of Nanomaterials written by Lide Zhang and published by World Scientific. This book was released on 2007 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the latest methods for the controlled growth of nanomaterial systems. The coverage includes simple and complex nanomaterial systems, ordered nanostructures and complex nanostructure arrays, and the essential conditions for the controlled growth of nanostructures with different morphologies, sizes, compositions, and microstructures. The book also discusses the dynamics of controlled growth and thermodynamic characteristics of two-dimensional nanorestricted systems. The authors introduce various novel synthesis methods for nanomaterials and nanostructures, such as hierarchical growth, heterostructures growth, doping growth and some developing template synthesis methods. In addition to discussing applications, the book reviews developing trends in nanomaterials and nanostructures.

Book Synthesis and Characterization of One  and Two dimensional Novel Nanomaterials

Download or read book Synthesis and Characterization of One and Two dimensional Novel Nanomaterials written by Yu Zhong (Ph.D.) and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials have attracted extensive interest due to their unique structure and excellent properties compared with their bulk counterparts. To obtain nanodevices with controlled properties, it is prerequisite to synthesize nanostructured materials with designed architecture. In this work, low (one- and two- ) dimensional nanomaterials with controlled structures have been synthesized and characterized based on chemical vapour deposition strategy. Our research targets cover one-dimensinoal hollow, solid, and solid @ hollow heterostructural nanomaterials including carbon nanotubes (CNTs), nitrogen-doped carbon nanotubes (NCNTs), SnO2 nanowires, Mo doped-SnO2 nanowires, Sn nanowires encapsulated in CNTs (Sn@CNTs), and two-dimensional Mo2S3 nanopetals. Dependence of product morphology, composition and phase structure on the synthesis conditions has been systematically investigated by changing temperature, growth time, gas flow, external atom doping, catalyst and employed substrate, to get insight into the correlation between the structure control and growth conditions of the products and their growth mechanism as well. High quality CNTs and NCNTs with uniform size were synthesized on carbon paper and Si wafer by introducing thin iron sputtering film as catalyst. High nitrogen content up to 10.4 at% was reached in the NCNTs. Controlled growth of SnO2 and Mo-doped SnO2 nanowires was obtained on different substrates including carbon paper, stainless steel and Cu to meet substrate requirements for practical applications. It was found that Mo doping could significantly improve the corrosion resistance of the SnO2 nanowires. Core-shell heterostructures of Sn nanowires @ CNTs were produced on carbon microfibers, stainless steel and Cu substrates. Rational control on the thickness and nature of the carbon shell of the heterostructures on carbon microfibers was realized by modulating growth parameters and introducing extra catalyst. Multi-generation Sn@CNTs were obtained by exploring SnO and SnO2 as starting materials. On the metallic substrates, Sn-alloy@CNT nanostructures were obtained. In another way, SnCo alloy nanowires @ CNTs with readily controlled Co content were achieved by introducing cobalt-contained precursor. Non-catalytic and catalytic growth of two-dimensional Mo2S3 nanopetals was investigated on carbon microfibers. Without catalyst, the nanopetals with high density were only obtained in a narrow range of the precursor concentration. With Au catalyst, uniform nanopetals with steady high density could be achieved in a wide range of the precursor concentration. Morphology, composition and phase structure of the nanostructures were characterized and analyzed by electron microscopy, X-ray diffraction, energy-dispersed spectroscopy and Raman spectroscopy.

Book Controlled Fabrication  Characterization and Properties of One dimensional Semiconductor Nanostructures from and on Metal Substrates

Download or read book Controlled Fabrication Characterization and Properties of One dimensional Semiconductor Nanostructures from and on Metal Substrates written by 錢桂香 and published by . This book was released on 2009 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Nanowires

Download or read book Semiconductor Nanowires written by J Arbiol and published by Elsevier. This book was released on 2015-03-31 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. - Explores a selection of advanced materials for semiconductor nanowires - Outlines key techniques for the property assessment and characterization of semiconductor nanowires - Covers a broad range of applications across a number of fields

Book One Dimensional Nanostructures

Download or read book One Dimensional Nanostructures written by Tianyou Zhai and published by John Wiley & Sons. This book was released on 2012-10-19 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.

Book Controllable Synthesis  Structure and Property Modulation and Device Application of One dimensional Nanomaterials

Download or read book Controllable Synthesis Structure and Property Modulation and Device Application of One dimensional Nanomaterials written by Yue Zhang and published by World Scientific. This book was released on 2012 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings present the latest achievements in one dimensional materials as presented at the 4th international conference on one-dimensional nanomaterials. The scope of the proceedings covers the inventions in controllable synthesis, structure and property characterizations, nanodamage, modeling and simulation, device fabrication and novel applications of 1D nanomaterials, such as electro-optical devices, electro-mechanical devices, bio-sensors and solar cells, etc.

Book The Colloidal Chemistry Synthesis and Electron Microscopy Characterization of Shape controlled Metal and Semiconductor Nanocrystals

Download or read book The Colloidal Chemistry Synthesis and Electron Microscopy Characterization of Shape controlled Metal and Semiconductor Nanocrystals written by Adam Biacchi and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Solution methods of materials synthesis have found application in a variety of fields due to the diversity of products accessible, facility of process scalability, and the ease of tuning their properties through prudent selection of reaction conditions. Control of experimental variables during the formation of colloidally stable nanoscale solids within a liquid matrix allows for tailoring of the particles' characteristics, including shape, size, composition, and surface chemistry. In this dissertation, I will discuss how the manipulation of reaction chemistries can be used to synthesize shape-controlled metal and semiconductor colloidal nanocrystals. Further, I will elaborate on the mechanisms by which these particles form from molecular precursors and describe how their properties can differ from their bulk analogues through extensive characterization, especially using transmission electron microscopy. These studies contribute to the continued development of chemical routes to nanocrystals and their application as functional materials.First, I will review recent advances in the synthesis and characterization of shape-controlled nanocrystals, as well as highlight their promising applicability in a number of emerging technologies. These principles will then be leveraged to the specific case of catalytically-active rhodium nanocrystals, which can be synthesized with morphological and dimensional control using a polyol solution-mediated strategy. I describe an innovative shape-controlled synthesis to monodisperse colloidal rhodium icosahedra, cubes, triangular plates, and octahedra using this route. Additionally, new insights into the important role of the polyol reducing solvent on the synthesis of these nanocrystals are revealed, and how these might be exploited to engender superior reaction control and novel products.Next, I will describe how a crystallization mechanism was established for the synthesis of numerous morphologies of noble metal nanocrystals. I present a thorough analysis of the synthesis of shape-controlled rhodium nanocrystals, using extensive transmission electron microscopy characterization, and relate these findings to one of the primary synthetic levers available in the polyol synthesis: the anionic ligands present. Further, I show that the crystallization process proceeds by a nonclassical mechanism in which cluster particles serve as a stable intermediate between molecular precursors and the final product. I then apply these principles to the shape-controlled synthesis of other noble metal nanocrystals before expounding a generalized formation mechanism in the polyol synthesis of colloidal metal nanocrystals. Finally, I will highlight my efforts in the designed synthesis and characterization of colloidal tin(II) sulfide (SnS) semiconducting "quantum dot" nanocrystals. I describe a route for the solution synthesis of monodisperse colloidal SnS nanosheets, nanocubes, and nanospherical polyhedra in high yield. Further, detailed crystallographic characterization of these nanocrystals using transmission electron microscopy indicates that their atomic structure possesses a previously-unreported nanoscale deviation from the bulk phase. Additionally, I show that their electronic and photocatalytic properties of these quantum dots are both shape-dependent and distinct from bulk SnS.

Book One Dimensional Nanostructures

Download or read book One Dimensional Nanostructures written by Zhiming M Wang and published by Springer Science & Business Media. This book was released on 2008-07-20 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional (1D) nanostructures, including nanowires, nanotubes and quantum wires, have been regarded as the most promising building blocks for nanoscale electronic and optoelectronic devices. This book presents exciting, state-of-the-art developments in synthesis and properties of 1D nanostructures with many kinds of morphologies and compositions as well as their considerable impact on spintronics, information storage, and the design of field-effect transistors.

Book Synthesis and Characterization of Germanium based Nanocrystals

Download or read book Synthesis and Characterization of Germanium based Nanocrystals written by Hyun Gyung Kim and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approaches to colloidal synthesis have rapidly developed to control the size, shape, and composition of various semiconductors, offering cost reductions, controllability, and scalability. Of semiconductor materials, germanium nanomaterials are known to be the most difficult to synthesize in solution-based methods because of their high crystallization temperature. Zero-dimensional germanium nanocrystals were synthesized by the heat-up method, without any strong reducing agent. Subsequently, finely controlled size-selective precipitation narrowed size distributions, and size-selected nanocrystals successfully created a monolayer germanium nanocrystals superlattice. One-dimensional germanium nanorods were synthesized by the solution–liquid–solid method using tin nanoparticles as seeds. By forming a liquid alloy with the tin seed at the eutectic temperature, which is much lower than the crystallization temperature, germanium nanorods were grown from the tin seed. A monophenylsilane enhanced the yield of germanium nanorods by promoting the phenyl redistribution of diphenylgermane, a germanium precursor. Using a mixture of HCl and HF, tin seeds were completely removed from the tips of the germanium nanorods, leaving germanium crystalline nanorods. Nonvolatile memories, a key component in various electronics and portable systems, include phase-change memory, a leading technology that has seen exponential growth in demand over the last decade. One important class of phase change materials are compounds on the GeTe–Sb2Te3 tie line. Despite interesting properties of the nanomaterials, colloidal synthesis of phase change material nanocrystals has only been rarely reported. In the present study, three representative phase change material nanocrystals, GeTe, Sb2Te3, and Ge2Sb2Te5, were successfully synthesized using the hot-injection method. A poly(vinylpyrrolidinone)–hexadecane (PVP–HDE) polymer was essential for the nanocrystal dispersion and making ternary Ge2Sb2Te5 nanocrystals. Two solvents, oleylamine and trioctylphosphine, were studied for synthesizing all three nanocrystals and reveal the conversion chemistry of phase change material precursors

Book Synthesis and Characterization of Functional One Dimensional Nanostructures

Download or read book Synthesis and Characterization of Functional One Dimensional Nanostructures written by Kwan Lee and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Novel Nanomaterials for Biomedical  Environmental and Energy Applications

Download or read book Novel Nanomaterials for Biomedical Environmental and Energy Applications written by Xiaoru Wang and published by Elsevier. This book was released on 2018-11-16 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials. - Offers comprehensive details on novel and emerging nanomaterials - Presents a comprehensive view of new and emerging tactics for the synthesis of efficient nanomaterials - Describes and monitors the functions of applications of new and emerging nanomaterials in the biomedical, environmental and energy fields

Book Nanomaterials  Synthesis  Characterization  Hazards and Safety

Download or read book Nanomaterials Synthesis Characterization Hazards and Safety written by Muhammad Bilal Tahir and published by Elsevier. This book was released on 2021-02-16 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials: Synthesis, Characterization, Hazards and Safety explains the fundamental properties of nanomaterials, covering their types and classifications. The book includes methods of preparation and characterization of nanostructured materials. It explains the principles and fundamentals of nanomaterials, with information on both pure and composite-based materials with e nanostructures, outlines the latest developments and advances in nanomaterials, and highlights toxic effects and protection. This book is designed to appeal to a wide readership of academic and industrial researchers, focusing on nanotechnology and nanomaterials, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science. Provides information on major concepts and advances made in the areas of nanomaterials properties and nano safety Identifies the major physiochemical properties of nanomaterials Explores the toxicity of different class of nanomaterials and how they can be used safely

Book Handbook of GaN Semiconductor Materials and Devices

Download or read book Handbook of GaN Semiconductor Materials and Devices written by Wengang (Wayne) Bi and published by CRC Press. This book was released on 2017-10-20 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses material growth, device fabrication, device application, and commercialization of energy-efficient white light-emitting diodes (LEDs), laser diodes, and power electronics devices. It begins with an overview on basics of semiconductor materials, physics, growth and characterization techniques, followed by detailed discussion of advantages, drawbacks, design issues, processing, applications, and key challenges for state of the art GaN-based devices. It includes state of the art material synthesis techniques with an overview on growth technologies for emerging bulk or free standing GaN and AlN substrates and their applications in electronics, detection, sensing, optoelectronics and photonics. Wengang (Wayne) Bi is Distinguished Chair Professor and Associate Dean in the College of Information and Electrical Engineering at Hebei University of Technology in Tianjin, China. Hao-chung (Henry) Kuo is Distinguished Professor and Associate Director of the Photonics Center at National Chiao-Tung University, Hsin-Tsu, Taiwan, China. Pei-Cheng Ku is an associate professor in the Department of Electrical Engineering & Computer Science at the University of Michigan, Ann Arbor, USA. Bo Shen is the Cheung Kong Professor at Peking University in China.