Download or read book The Physics of Selenium and Tellurium written by E. Gerlach and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conferences on the Physics of Selenium and Tellurium were held in 1964 in London, 1967 in Montreal, and eight years ago, 1971, in Pont-a-Mousson. The last conference was noteworthy because of two facts: For crystalline Te and Se a high level of results was achieved and, further, it was possible to outline the focal points for continuing research work. These points were mainly to explore. the electronic structure of trigonal Se and Te and of the hypothetic~l cubic limit of these materials. To im plement such study, progress in band structure calculations was necessary. In addition, a consistent analytical description of the bands near the va lence band conduction band gap was required with the aim to understand the semiconducting properties, mainly magnetotransport and magnetooptical ef fects of band electrons and of impurities. Further questions concerned the influence of defects, such as dislocations, on transport properties and, finally, a concluding description of lattice dynamics of trigonal Se and Te, based on theoretical and experimental work, such as neutron diffraction and optical measurements. Besides the listing of this future research program it became obvious that more detailed work on the amorphous state of solids and liquids was necessary in order to improve our knowledge about their crystalline proper ties, growing conditions. and all problems of chemical bonds.
Download or read book Photoferroelectrics written by Vladimir M. Fridkin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since Valasek's discovery of the ferroelectric properties of Rochelle salt nearly 60 years ago, ferroelectricity has been regarded as one of the tradi tional branches of dielectric physics. It has had important applications in lattice dynamics, quantum electronics, and nonlinear optics. The study of electron processes in ferroelectrics was begun with VUL's investigations of the ferroelectric properties of barium titanate [1.1]. In trinsic and extrinsic optical absorption, band structure, conductivity and photoconductivity, carrier mobility. and transport mechanisms were examined in this compound, and in other perovskite ferroelectric semiconductors. An important discovery was that of the highly photosensitive photoconducting ferroelectrics of type AVBVICVIII (e.g. SbSI) by MERZ et al. in 1962 [1.2,3]. A large number of ferroelectric semiconductors (some photosensitive, some not) are now known, including broad-band materials (e.g. lithium niobate, lithium tantalate, barium and strontium niobate, and type-A~B~I compounds), BI and narrow-band semiconductors (e.g. type_AIVB compounds). A series of improper ferroelectric semiconductors and photosensitive ferroelastics have been discovered, of which Sb 0 I is an example. s 7 Owing to the uncertainty of their band structure, the difficulty in deter mining the nature of the levels, the complexity of alloying, and their gen erally low mobility values, ferroelectrics are rarely of interest regarded as nonlinear semiconductors. The most fruitful approach has been the study of the influence of electrons (especially nonequilibrium electrons) and electron excitations on phase transitions and ferroelectric properties. A large group of phenomena have recently been discovered and investigated.
Download or read book Phonon Dispersion Relations in Insulators written by H. Bilz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This phonon atlas presents a collection of phonon-dispersion and density-of states curves of more than a hundred insulating crystals. It grew out of an appendix to a handbook article on phonon spectra [2.1J from which it was fin ally separated mainly because this phonon atlas provides a rather self-con tained tool for every scientist who is working in the field of dynamical properties of solids. He often may find it' useful to have a handy documen tation of the experimental phonon dispersion curves which have been measured so far, together with information on calculated dispersion relations and densities of states. The book will be found to be incomplete by readers who are interested not only in phonon frequencies of a specific crystal but would also like to know about related properties such as elastic and dielectric constants. This is, at the present time, beyond the scope of this volume, but the authors would welcome all suggestions and criticism which could be considered for a forth coming edition. Furthermore, we would be pleased to provide interested readers with information about phonon spectra which came to our knowledge after completion of the manuscript. On the other hand, we will be most grateful for all information about phonon dispersion curves which is missing in our collection or new data for further editions.
Download or read book Introduction to Solid State Theory written by Otfried Madelung and published by Springer. This book was released on 1997-05-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Solid-State Theory is a textbook for graduate students of physics and materials science. It also provides the theoretical background needed by physicists doing research in pure solid-state physics and its applications to electrical engineering. The fundamentals of solid-state theory are based on a description by delocalized and localized states and - within the concept of delocalized states - by elementary excitations. The development of solid-state theory within the last ten years has shown that by a systematic introduction of these concepts, large parts of the theory can be described in a unified way. This form of description gives a "pictorial" formulation of many elementary processes in solids, which facilitates their understanding.
Download or read book Fundamentals of Crystal Growth I written by Franz E. Rosenberger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intrinsic properties of a solid, i. e. , the properties that result from its specific structure, can be largely modified by crystallographic and chem ical defects. The formation of these defects is governed by the heat and mass transfer conditions which prevail on and near a crystal-nutrient in terface during crystallization. Hence, both the growth of highly perfect crystals and the preparation of samples having predetermined defect-induced (extrinsic) properties require a thorough understanding of the reaction and transport mechanisms that govern crystallization from vapors, solutions and melts. Crystal growth, as a science, is therefore mostly concerned with the chemistry and physics of heat and mass transport in these fluid-solid phase transitions. Solid-solid transitions are, at this time, not widely employed for high quality single-crystal production. Transport concepts are largely built upon equilibrium considerations, i. e. , on thermodynamic and phase equilibrium concepts. Hence to supply a "workable" foundation for the succeeding discussions, this text begins in Chapter 2 with a concise treatment of thermodynamics which emphasizes applications to mate rials preparation. After working through this chapter, the reader should feel at ease with often (particularly among physicists) unfamiliar entities such as chemical potentials, fugacities, activities. etc. Special sections on ther mochemical calculations (and their pitfalls) and compilations of thermochemi cal data conclude the second chapter. Crystal growth can be called. in a wide sense, the science and technology of controlling phase transitions that lead to (single crystalline) solids.
Download or read book Green s Functions in Quantum Physics written by Eleftherios N. Economou and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this edition the second and main part of the book has been considerably expanded as to cover important applications of the formalism. In Chap.5 a section was added outlining the extensive role of the tight binding (or equivalently the linear combination of atomic-like orbitals) approach to many branches of solid-state physics. Some additional informa tion (including a table of numerical values) regarding square and cubic lattice Green's functions were incorporated. In Chap.6 the difficult subjects of superconductivity and the Kondo effect are examined by employing an appealingly simple connection to the question of the existence of a bound state in a very shallow potential well. The existence of such a bound state depends entirely on the form of the un perturbed density of states near the end of the spectrum: if the density of states blows up there is always at least one bound state. If the density of states approaches zero continuously, a critical depth (and/or width) of the well must be reached in order to have a bound state. The borderline case of a finite discontinuity (which is very important to superconductivity and the Kondo effect) always produces a bound state with an exponentially small binding energy.
Download or read book Electron Transport in Compound Semiconductors written by B.R. Nag and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovery of new transport phenomena and invention of electron devices through exploitation of these phenomena have caused a great deal of interest in the properties of compound semiconductors in recent years. Extensive re search has been devoted to the accumulation of experimental results, par ticularly about the artificially synthesised compounds. Significant ad vances have also been made in the improvement of the related theory so that the values of the various transport coefficients may be calculated with suf ficient accuracy by taking into account all the complexities of energy band structure and electron scattering mechanisms. Knowledge about these deve lopments may, however, be gathered only from original research contributions, scattered in scientific journals and conference proceedings. Review articles have been published from time to time, but they deal with one particular material or a particular phenomenon and are written at an advanced level. Available text books on semiconductor physics, do not cover the subject in any detail since many of them were written decades ago. There is, there fore, a definite need for a book, giving a comprehensive account of electron transport in compound semiconductors and covering the introductory material as well as the current work. The present book is an attempt to fill this gap in the literature. The first chapter briefly reviews the history of the developement of compound semiconductors and their applications. It is also an introduction to the contents of the book.
Download or read book Dynamical Scattering of X Rays in Crystals written by Z.G. Pinsker and published by Springer. This book was released on 2012-02-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Historical Survey) The discovery of X-ray diffraction in crystals by LAUE, FRIDRICH and KNIPPING in 1912 [1.1] served as the starting pOint for the development of scientific research along a number of important lines. We shall discuss just a few of them. The above discovery convincingly demonstrated the wave properties of X-rays. This, together with the previously established electromagnetic nature of radiation, confirmed the hypothesis that X-rays form the short-wave part of the electromagnetic spectrum. Further, this discovery was the first and decisive experimental proof of the periodic structure of crystals. In fact, theoretical crystallography had already arrived at this conclusion, mainly as an outcome of the theory of the space groups of symmetry elaborated by FEDOROV [1.2] and SCHOENFLIES [1.3]. From the optics of visible light we know that the radiation of a wave length of the same order as, and preferably less than, the period of a grat ing suffers diffraction on periodic objects of the type of optical grating. Thus, the discovery proved that the wavelength of an X-ray must be of the order of interatomic distances. It became clear why the visible light of wavelengths exceeding the crystal lattice periods by about 500 to 1000 times failed to reveal the periodic structure of crystals in diffraction experi ments.
Download or read book The Physics of Elementary Excitations written by S. Nakajima and published by Springer. This book was released on 2011-12-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the physics of elementary excitations in condensed matter with emphasis on basic concepts and their mathematical representations. The nature of the book is mainly determined by the fact that it was originally written, in Japanese, as one volume of Iwanami Series of Fundamental Physics supervised by Professor H. Yukawa. Our task was to portray the theory of condensed matter from a unified point of view for the student looking for his own research field and also for more senior readers interested in fundamentals of contemporary physics. As our point of view, we chose the concept of elementary excitation, which we believe to be one of the most fruitful concepts discovered by the quantum theory of matter. The present English edition has been translated by the authors themselves from the second, revised Japanese edition published in 1978, six years after publication of the first edition. In translating, we have introduced no major modifications; only the list of references has been made more suitable to overseas readers. In the English as well as in the Japanese editions, Chaps. 1,4, and part of 6 were written by Nakajima, Chaps. 2, 5, and 7 by Toyozawa, and Chaps. 3 and part of 6 by Abe. Finally we should like to thank Professor P. Fulde for kind help and Dr. H. Lotsch, SpriIiger-Verlag, for patient cooperation in making this English edition a reality.
Download or read book Magnetic Flux Structures in Superconductors written by R.P. Huebener and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition has been brought up to date by the inclusion of an extensive new chapter on aspects relevant to high-temperature superconductors. The new edition provides researchers, engineers and other scientists with an introduction to the field and makes useful supplementary reading for graduate students in low-temperature physics.
Download or read book Light Scattering in Solids I written by M. Cardona and published by Springer Science & Business Media. This book was released on 2005-07-07 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by numerous experts