EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Continuum Analysis of Biological Systems

Download or read book Continuum Analysis of Biological Systems written by G.K. Suraishkumar and published by Springer. This book was released on 2014-07-08 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their application to practical issues related to design and operation of biological systems. Intended as a self-contained textbook for students in biotechnology and in industrial, chemical and biomedical engineering, this book will also represent a useful reference guide for professionals working in the above-mentioned fields.

Book Microprobe Analysis of Biological Systems

Download or read book Microprobe Analysis of Biological Systems written by Thomas Hutchinson and published by Elsevier. This book was released on 2012-12-02 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microprobe Analysis of Biological Systems covers the proceedings of the 1980 Microprobe Analysis of Biological Systems conference held at Battelle Conference Center in Seattle, Washington. Most of the major laboratories in the field of biological microanalysis in the United States, England, Scotland, France, and Germany are represented. The conference presents the findings, theories, techniques, and procedures of the laboratory represented, no matter how tentative and exploratory. This book is divided into four parts encompassing 22 chapters that focus on biological applications of microprobe analysis. The introductory part describes the application of electron microprobe and X-ray microanalyses in studies of epithelial transport, avian salt gland, electrolyte transport, and acrosome reaction. The subsequent part covers the application of microprobe techniques in the analysis of cardiac, skeletal, vascular smooth, and freeze-dried muscles. It also describes a method for obtaining erythrocyte preparations for validating biological microprobe methods and the continuum-fluorescence effect on thick biological tissue. The method using freeze-substitution to localize calcium in quick-frozen tissue for X-ray microanalysis is also explained. The third part of the book tackles the principles, basic features, and applications of electron energy-loss spectroscopy. Discussions on the use of inner-shell signals for a quantitative local microanalysis technique; theoretical study of the energy resolution; and collection efficiency of a magnetic spectrometer are also included. The final part covers the elemental distribution in single erythrocytes using X-ray microanalysis. It also discusses the fundamentals of cryosectioning process for X-ray microanalysis of diffusible elements and the freezing behavior of a number of chemically different gels chosen for their partial resemblance to biological structures. Considerable chapters contain materials and methods, results, discussions, conclusions, and references. This book will be of value to scientists interested in elemental and ion transport within cells and between cells and extracellular compartments.

Book Complex Fluids in Biological Systems

Download or read book Complex Fluids in Biological Systems written by Saverio E. Spagnolie and published by Springer. This book was released on 2014-11-27 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.

Book The Elements of Continuum Biomechanics

Download or read book The Elements of Continuum Biomechanics written by Marcelo Epstein and published by John Wiley & Sons. This book was released on 2012-08-13 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: An appealing and engaging introduction to Continuum Mechanics in Biosciences This book presents the elements of Continuum Mechanics to people interested in applications to biological systems. It is divided into two parts, the first of which introduces the basic concepts within a strictly one-dimensional spatial context. This policy has been adopted so as to allow the newcomer to Continuum Mechanics to appreciate how the theory can be applied to important issues in Biomechanics from the very beginning. These include mechanical and thermodynamical balance, materials with fading memory and chemically reacting mixtures. In the second part of the book, the fully fledged three-dimensional theory is presented and applied to hyperelasticity of soft tissue, and to theories of remodeling, aging and growth. The book closes with a chapter devoted to Finite Element analysis. These and other topics are illustrated with case studies motivated by biomedical applications, such as vibration of air in the air canal, hyperthermia treatment of tumours, striated muscle memory, biphasic model of cartilage and adaptive elasticity of bone. The book offers a challenging and appealing introduction to Continuum Mechanics for students and researchers of biomechanics, and other engineering and scientific disciplines. Key features: Explains continuum mechanics using examples from biomechanics for a uniquely accessible introduction to the topic Moves from foundation topics, such as kinematics and balance laws, to more advanced areas such as theories of growth and the finite element method.. Transition from a one-dimensional approach to the general theory gives the book broad coverage, providing a clear introduction for beginners new to the topic, as well as an excellent foundation for those considering moving to more advanced application

Book Transport Phenomena in Biological Systems

Download or read book Transport Phenomena in Biological Systems written by George A. Truskey and published by Prentice Hall. This book was released on 2009 with total page 889 pages. Available in PDF, EPUB and Kindle. Book excerpt: For one-semester, advanced undergraduate/graduate courses in Biotransport Engineering. Presenting engineering fundamentals and biological applications in a unified way, this text provides students with the skills necessary to develop and critically analyze models of biological transport and reaction processes. It covers topics in fluid mechanics, mass transport, and biochemical interactions, with engineering concepts motivated by specific biological problems.

Book Mathematical Modeling of Complex Biological Systems

Download or read book Mathematical Modeling of Complex Biological Systems written by Abdelghani Bellouquid and published by Springer Science & Business Media. This book was released on 2007-10-10 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the evolution of several socio-biological systems using mathematical kinetic theory. Specifically, it deals with modeling and simulations of biological systems whose dynamics follow the rules of mechanics as well as rules governed by their own ability to organize movement and biological functions. It proposes a new biological model focused on the analysis of competition between cells of an aggressive host and cells of a corresponding immune system. Proposed models are related to the generalized Boltzmann equation. The book may be used for advanced graduate courses and seminars in biological systems modeling.

Book Understanding the Dynamics of Biological Systems

Download or read book Understanding the Dynamics of Biological Systems written by Werner Dubitzky and published by Springer Science & Business Media. This book was released on 2011-01-07 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a communication platform to bridge the cultural, conceptual, and technological gap among the key systems biology disciplines of biology, mathematics, and information technology. To support this goal, contributors were asked to adopts an approach that appeals to audiences from different backgrounds.

Book Thermodynamic Network Analysis of Biological Systems

Download or read book Thermodynamic Network Analysis of Biological Systems written by J. Schnakenberg and published by Springer. This book was released on 1977 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Control Theory and Systems Biology

Download or read book Control Theory and Systems Biology written by Pablo A. Iglesias and published by MIT Press. This book was released on 2010 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of how engineering techniques from control and systems theory can be used to help biologists understand the behavior of cellular systems.

Book Nanotribology and Nanomechanics

Download or read book Nanotribology and Nanomechanics written by Bharat Bhushan and published by Springer Science & Business Media. This book was released on 2006-01-27 with total page 1157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent emergence and proliferation of proximal probes, e.g. SPM and AFM, and computational techniques for simulating tip-surface interactions has enabled the systematic investigation of interfacial problems on ever smaller scales, as well as created means for modifying and manipulating nanostructures. In short, they have led to the appearance of the new, interdisciplinary fields of micro/nanotribology and micro/nanomechanics. This volume serves as a timely, practical introduction to the principles of nanotribology and nanomechanics and applications to magnetic storage systems and MEMS/NEMS. Assuming some familiarity with macrotribology/mechanics, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts. After reviewing the fundamental experimental and theoretical aspects in the first part, Nanotribology and Nanomechanics then treats applications. Three groups of readers are likely to find this text valuable: graduate students, research workers, and practicing engineers. It can serve as the basis for a comprehensive, one- or two-semester course in scanning probe microscopy; applied scanning probe techniques; or nanotribology/nanomechanics/nanotechnology, in departments such as mechanical engineering, materials science, and applied physics. With a Foreword by Physics Nobel Laureate Gerd Binnig Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Department of Mechanical Engineering, Graduate Research Faculty Advisor in the Department of Materials Science and Engineering, and the Director of the Nanotribology Laboratory for Information Storage & MEMS/NEMS (NLIM) at the Ohio State University, Columbus, Ohio. He is an internationally recognized expert of tribology and mechanics on the macro- to nanoscales, and is one of the most prolific authors. He is considered by some a pioneer of the tribology and mechanics of magnetic storage devices and a leading researcher in the fields of nanotribology and nanomechanics using scanning probe microscopy and applications to micro/nanotechnology. He is the recipient of various international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award.

Book Biological Systems  Complexity and Artificial Life

Download or read book Biological Systems Complexity and Artificial Life written by Jacques Ricard and published by Bentham Science Publishers. This book was released on 2014-05-06 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: The exponential increase in computing power in the late twentieth century has allowed researchers to gather, process and analyze large volumes of information and construct rational paradigms of systems. Life sciences are no exception and computing advances have led to the birth of fields such as functional genomics and bioinformatics and facilitated an expansion of our understanding of biological systems. Biological Systems: Complexity and Artificial Life is an essential primer on systems biology for biologists and researchers having a multidisciplinary background. The volume covers a variety of theoretical models explaining biological processes. The book starts with an introductory chapter on the classical molecular biology paradigm and progresses towards concepts related to enzyme kinetics, non equilibrium dynamics, cellular thermodynamics, molecular motion in cells and more. The book concludes with a philosophical note on the concept of the biological system.

Book Complexity  Analysis and Control of Singular Biological Systems

Download or read book Complexity Analysis and Control of Singular Biological Systems written by Qingling Zhang and published by Springer. This book was released on 2012-02-23 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the monograph illuminating.

Book Microbeam Analysis in Biology

Download or read book Microbeam Analysis in Biology written by Claude Lechene and published by Elsevier. This book was released on 2012-12-02 with total page 695 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbeam Analysis in Biology contains the proceedings of a workshop on Biological X-Ray Microanalysis by Electron Beam Excitation, held in Boston, Massachusetts on August 25-26, 1977. This book focuses on the principles, techniques, and biological use of electron probe microanalysis, energy-loss spectroscopy, and ion probe microanalysis. This text reflects the emphasis of the workshop on presenting the principles of analysis, the optimization of operating conditions, the description of successful techniques for sample preparation and quantitation, the illustration of problems and pitfalls, and the direction of microbeam analysis in biology.

Book A System scale Dynamic Analysis of Complex Biological Systems

Download or read book A System scale Dynamic Analysis of Complex Biological Systems written by Feng He and published by . This book was released on 2008 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Feedback Control in Systems Biology

Download or read book Feedback Control in Systems Biology written by Carlo Cosentino and published by CRC Press. This book was released on 2011-10-17 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like engineering systems, biological systems must also operate effectively in the presence of internal and external uncertainty—such as genetic mutations or temperature changes, for example. It is not surprising, then, that evolution has resulted in the widespread use of feedback, and research in systems biology over the past decade has shown that feedback control systems are widely found in biology. As an increasing number of researchers in the life sciences become interested in control-theoretic ideas such as feedback, stability, noise and disturbance attenuation, and robustness, there is a need for a text that explains feedback control as it applies to biological systems. Written by established researchers in both control engineering and systems biology, Feedback Control in Systems Biology explains how feedback control concepts can be applied to systems biology. Filling the need for a text on control theory for systems biologists, it provides an overview of relevant ideas and methods from control engineering and illustrates their application to the analysis of biological systems with case studies in cellular and molecular biology. Control Theory for Systems Biologists The book focuses on the fundamental concepts used to analyze the effects of feedback in biological control systems, rather than the control system design methods that form the core of most control textbooks. In addition, the authors do not assume that readers are familiar with control theory. They focus on "control applications" such as metabolic and gene-regulatory networks rather than aircraft, robots, or engines, and on mathematical models derived from classical reaction kinetics rather than classical mechanics. Another significant feature of the book is that it discusses nonlinear systems, an understanding of which is crucial for systems biologists because of the highly nonlinear nature of biological systems. The authors cover tools and techniques for the analysis of linear and nonlinear systems; negative and positive feedback; robustness analysis methods; techniques for the reverse-engineering of biological interaction networks; and the analysis of stochastic biological control systems. They also identify new research directions for control theory inspired by the dynamic characteristics of biological systems. A valuable reference for researchers, this text offers a sound starting point for scientists entering this fascinating and rapidly developing field.

Book APPLICATIONS OF CONTINUUM MECH

Download or read book APPLICATIONS OF CONTINUUM MECH written by Yik-Sau Tang and published by Open Dissertation Press. This book was released on 2017-01-26 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Applications of Continuum Mechanics: Computational Studies in Biological and Discrete Systems" by Yik-sau, Tang, 鄧亦修, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: This thesis is divided into two parts: part A and part B. Part A mainly focused on the biological systems while part B emphasized on discrete systems. Both studies can be applied readily in the scientific world. Part A: Computational Fluid Dynamics Study of Biological Systems Cerebrovascular and cardiovascular diseases are life threatening diseases, and are leading causes of death and disability in the civilized world. Thoracic aortic dissection (TAD), a form of cardiovascular disease, occurs when blood infiltrates into the layers of vascular aortic wall, creating a new artificial channel (the false lumen) alongside with the original channel (the true lumen). The weakened false lumen wall may expand due to the blood pressure, and high mortality rate is resulted upon imminent rupture. A clinical question is to determine the timing of the surgical procedure. By employing computational fluid dynamics techniques, several biomechanical factors including aneurysm size, blood pressure and tear distance were investigated. Generally speaking, a greater dissecting aneurysm, a higher blood pressure and a partially thrombosed false lumen might lead to undesirable hemodynamics consequences. This analysis may improve the healthcare of patients in the future as it can provide useful information for clinicians to access the risk of aneurysm rupture. On the other hand, intracranial aneurysm, a dangerous cerebrovascular disorder, occurs when a cerebral artery dilates. Such aneurysm is usually located near the arterial bifurcation in the Circle of Willis, and can lead to massive internal bleeding in the subarachnoid space upon rupture. An endovascular treatment is the implantation of a flow diverting stent which covers the aneurysm orifice. This metallic stent, namely the Pipeline Embolization Device (PED), can restrict the blood flow into the aneurysm, and thus reduces the rupture risk. The clinical question is to determine the factors affecting the stent efficiency. Computational fluid dynamics (CFD) analysis was performed to investigate the flow properties before and after stenting. Several factors including side branch diameter, aneurysm aspect ratio and the stent porosity were tested. Generally speaking, a larger side branch diameter or a higher aspect ratio might provide an undesirable hemodynamic condition, e.g. lower shear stress. In addition, two patient-specific bifurcation aneurysms reconstructed from Computed Tomography (CT) imaging data were tested, and the results showed good agreements with the idealized geometries. This study can definitely provide physicians with valuable information for treatment planning, therapeutic decision making and for future stent design. Part B: Discrete Systems In nonlinear optics and plasmonics, the dissipative spatial solitons are of fundamental importance. Here a discrete dissipative model was introduced, with hot spots (HSs) embedded into it. Symmetric solutions were determined in an implicit analytical form In addition, a two-dimensional discrete dynamical system based on bulk linear lossy lattice was also tested. The analysis of localized modes pinned to the HSs was performed semi-analytically using truncated lattices. These systems can be applied in photonics and plasmonics readily. Subjects: Solitons - Mathematical models Fluid dynamics - Mathematical models Continuum mech