EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Construction Simulation of Curved Steel I Girder Bridges

Download or read book Construction Simulation of Curved Steel I Girder Bridges written by Ching-Jen Chang and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This study addresses the development of a prototype software system for analysis of horizontally curved steel I-girder bridges using open-section thin-walled beam theory. Recommendations are provided for the use of three-dimensional (3D) grid idealizations in analyzing curved I-girder bridge structural systems. The 3D grid idealizations account for the general displacements and rotations common within complex curved I-girder bridge structures, i.e., none of the displacement and rotational degrees-of-freedom are arbitrarily assumed to be equal to zero. Also, these idealizations account for the warping (or cross-bending) deformations of the I-girder flanges that dominate typical girder torsional responses. An approximate approach is investigated for capturing the influence of girder web distortion on composite I-girder responses. A key focus of this research is the development of prototype methods for simulating the construction of curved steel I-girder bridges, including erection of the steel and staged casting of the slab. The resulting capabilities allow engineers to evaluate the deflections, reactions and/or stresses at different stages of the steel erection or concrete slab construction, determine required crane capacities, tie-down, jacking or come-along forces, and calculate incremental displacements due to removal of temporary supports. Also, the capabilities can be used to determine the influence of different steel detailing methods on the bridge geometry, such as the web plumbness under the steel or total dead load. Key requirements necessary to ensure accuracy of the analysis results are addressed.

Book Analysis and Design of Curved Steel Bridges

Download or read book Analysis and Design of Curved Steel Bridges written by Hiroshi Nakai and published by McGraw-Hill Companies. This book was released on 1988 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very Good,No Highlights or Markup,all pages are intact.

Book Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges

Download or read book Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges written by and published by Transportation Research Board. This book was released on 2012 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: "TRB's National Cooperative Highway Research Program (NCHRP) Report 725: Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges offers guidance on the appropriate level of analysis needed to determine the constructability and constructed geometry of curved and skewed steel girder bridges. When appropriate in lieu of a 3D analysis, the guidelines also introduce improvements to 1D and 2D analyses that require little additional computational costs."--Publication information.

Book Behavior  Design and Construction of Horizontally Curved Composite Steel Box Girder Bridges  microform

Download or read book Behavior Design and Construction of Horizontally Curved Composite Steel Box Girder Bridges microform written by Muayad Whyib Aldoori and published by Library and Archives Canada = Bibliothèque et Archives Canada. This book was released on 2004 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Horizontally curved girder bridges have been used considerably in recent years in highly congested urban areas. However, although significant research on physical testing and advanced analysis has been underway for the past decade, the practical employment of many recommendations has not been achieved by the engineering community nor have standards reflecting this work been brought into practice. The design process of curved composite bridges involves tracking the stresses and the potential failure change in the girders during erection, construction and service loading stages. For structural safety and serviceability, the designer estimates the stresses induced within the bridge and assure that they do not exceed the applicable specified limit state as required in bridge design standards. However, the designer may be concerned about the level of approximation that is used in his estimate or even the applicability of the underlying theory. To answer this question and provide the designer with more insight into the behavior of the curved bridges, the field testing during construction and service loading of a curved bridge located near Baltimore, Maryland is re-examined here using linear elastic three-dimensional finite element modeling. Comparisons are made between the finite element results and the measured results. Finally, to facilitate the finite element modeling effort for use by a designer, ANSYS Parametric Design Language (APDL) capabilities are used here to develop an analysis/design tool for "Bath-Tub" style curved steel girder bridges. This tool is then used to evaluate the effects of several important design variables on the response and behavior of the girders during the construction phase. This study demonstrates the ability of finite element modeling to assess the stiffness, serviceability performance, buckling behavior and ultimate strength of curved bridges during construction and it is a major step towards a performance based approach to design for stability. The level of safety or reliability that would be available during the erection and the construction processes of horizontally curved girder bridges represents another major concern for the designer. A three span continuous curved box girder bridge in Houston, Texas is used in this study as an example reflecting current detailing and fabricating practice and it is chosen for a detailed evaluation of the structural safety/reliability during the erection and construction process. This task involves simulating the girder erection and concrete slab placement sequence of the bridge using comprehensive nonlinear three dimensional finite element modeling.

Book Development of LRFD Specifications for Horizontally Curved Steel Girder Bridges

Download or read book Development of LRFD Specifications for Horizontally Curved Steel Girder Bridges written by J. M. Kulicki and published by Transportation Research Board. This book was released on 2006 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report contains the findings of research performed to develop design specifications for horizontally curved steel girder bridges.

Book Improved Design Specifications for Horizontally Curved Steel Girder Highway Bridges

Download or read book Improved Design Specifications for Horizontally Curved Steel Girder Highway Bridges written by Dann H. Hall and published by Transportation Research Board. This book was released on 1999 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis and Design of Plated Structures

Download or read book Analysis and Design of Plated Structures written by N.E. Shanmugam and published by Woodhead Publishing. This book was released on 2021-09-29 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis and Design of Plated Structures: Stability, Second Edition covers the latest developments in new plate solutions and structural models for plate analysis. Completely revised and updated by its distinguished editors and international team of contributors, this edition also contains new chapters on GBT-based stability analysis and the finite strip and direct strength method (DSM). Other sections comprehensively cover bracing systems, storage tanks under wind loading, the analysis and design of light gauge steel members, applications of high strength steel members, cold-formed steel pallet racks, and the design of curved steel bridges. This is a comprehensive reference for graduate students, researchers and practicing engineers in the fields of civil, structural, aerospace, mechanical, automotive and marine engineering. Features new chapters on the stability behavior of composite plates such as laminated composite, functionally graded, and steel concrete composite plate structures Includes newly developed numerical simulation methods and new plate models Provides generalized beam theory for analyzing thin-walled structures

Book Computational Analysis and Design of Bridge Structures

Download or read book Computational Analysis and Design of Bridge Structures written by Chung C. Fu and published by CRC Press. This book was released on 2014-12-11 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain Confidence in Modeling Techniques Used for Complicated Bridge StructuresBridge structures vary considerably in form, size, complexity, and importance. The methods for their computational analysis and design range from approximate to refined analyses, and rapidly improving computer technology has made the more refined and complex methods of ana

Book Guide to Stability Design Criteria for Metal Structures

Download or read book Guide to Stability Design Criteria for Metal Structures written by Ronald D. Ziemian and published by John Wiley & Sons. This book was released on 2010-02-08 with total page 1120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive guide to stability design criteria, fully updated and incorporating current research Representing nearly fifty years of cooperation between Wiley and the Structural Stability Research Council, the Guide to Stability Design Criteria for Metal Structures is often described as an invaluable reference for practicing structural engineers and researchers. For generations of engineers and architects, the Guide has served as the definitive work on designing steel and aluminum structures for stability. Under the editorship of Ronald Ziemian and written by SSRC task group members who are leading experts in structural stability theory and research, this Sixth Edition brings this foundational work in line with current practice and research. The Sixth Edition incorporates a decade of progress in the field since the previous edition, with new features including: Updated chapters on beams, beam-columns, bracing, plates, box girders, and curved girders. Significantly revised chapters on columns, plates, composite columns and structural systems, frame stability, and arches Fully rewritten chapters on thin-walled (cold-formed) metal structural members, stability under seismic loading, and stability analysis by finite element methods State-of-the-art coverage of many topics such as shear walls, concrete filled tubes, direct strength member design method, behavior of arches, direct analysis method, structural integrity and disproportionate collapse resistance, and inelastic seismic performance and design recommendations for various moment-resistant and braced steel frames Complete with over 350 illustrations, plus references and technical memoranda, the Guide to Stability Design Criteria for Metal Structures, Sixth Edition offers detailed guidance and background on design specifications, codes, and standards worldwide.

Book Guidelines for Analyzing Curved and Skewed Bridges and Designing Them for Construction

Download or read book Guidelines for Analyzing Curved and Skewed Bridges and Designing Them for Construction written by Daniel Gattner Linzell and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effects of design, fabrication, and construction on the geometry and load distribution in a curved or skewed bridge system are areas in which further study and understanding are required. This project utilized remote acquisition capabilities for instruments on two structures in the Interstate 99 corridor: a horizontally curved, steel, I-girder bridge, and a skewed, prestressed, concrete bridge. Data obtained from these structures were examined and the numerical model accuracy for curved and skewed, steel, I-girder bridges and select appropriate model types and software was investigated. Parametric studies were undertaken on a group of representative curved and skewed steel bridge structures to numerically examine the influence of specific variables on behavior during construction. Results enabled the identification of preferred erection sequencing approaches.

Book Module 5     Curved Steel Girder Bridges

Download or read book Module 5 Curved Steel Girder Bridges written by Gilbert Y. Grondin and published by . This book was released on 2019 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: DM5 is based on CSA Standard S6-14, Canadian Highway Bridge Design Code. Structural steel plates conform to CSA G40.21 grades 350A and 350AT.

Book Guidelines for Analyzing Curved and Skewed Bridges and Designing Them for Construction

Download or read book Guidelines for Analyzing Curved and Skewed Bridges and Designing Them for Construction written by Daniel Gattner Linzell and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The effects of design, fabrication, and construction on the geometry and load distribution in a curved or skewed bridge system are areas in which further study and understanding are required. This project utilized remote acquisition capabilities for instruments on two structures in the Interstate 99 corridor: a horizontally curved, steel, I-girder bridge, and a skewed, prestressed, concrete bridge. Data obtained from these structures were examined and the numerical model accuracy for curved and skewed, steel, I-girder bridges and select appropriate model types and software was investigated. Parametric studies were undertaken on a group of representative curved and skewed steel bridge structures to numerically examine the influence of specific variables on behavior during construction. Results enabled the identification of preferred erection sequencing approaches.

Book Stabilizing Techniques for Curved Steel I girders During Construction

Download or read book Stabilizing Techniques for Curved Steel I girders During Construction written by Brian James Petruzzi and published by . This book was released on 2010 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many issues and challenges to deal with when designing a curved I-girder bridge. These challenges primarily deal with the many performance stages that curved I-girder bridges have such as the erection, construction, and in-service stages. When design engineers assess the stability of a bridge system, they typically evaluate the system in its final configuration with all cross frames attached and the hardened concrete deck placed. The evaluation of girder stability during erection and early stages of construction stages is difficult because of the limited presence of bracing in the system. Due to a lack of readily available analytical tools, many contractors do not conduct detailed analytical evaluations of the bridge behavior during early stages of the construction when stability is often critical. Instead, many contractors use rules of thumb and experience to ensure stability during erection. Erection and construction practices typically vary among contractors and consistent erection methods are a rarity. Although some rules of thumb may be quite conservative, others are much less so. Therefore, coming up with design guidelines based on parametric studies rather than rules of thumb are desirable to help allow the contractor and the designer to work together to prevent issues that may occur due to the lack of communication between the two professions. Lastly, many challenges arise due to the complex geometry of curved I-girders. To prevent excessive rotation in erected girders, three points of vertical support are often provided. Two of these points usually consist of permanent supports in the form of bridge piers or abutments. The third point of support may consist of a temporary support in the form of a shore tower or holding crane. Cases where a holding crane may be satisfactory over a shore tower are also not well understood. To improve the understanding of lifting practices and temporary support requirements, parametric studies were conducted using the finite element program ANSYS. Field data consisting of displacement, stress, and girder rotations gathered from two tests were used to validate both the linear and geometric non-linear three-dimensional FEA models. Upon validation, the finite element model was used to conduct linear and geometric non-linear analyses to determine critical factors in curved I-girder bridges during construction. Specifically, serviceability limit states were studied for the lifting of curved girders. For partially constructed states, parametric studies were conducted to determine optimal locations to place temporary supports as well as to investigate stability differences between using a shore tower and a holding crane. Recommendations are presented to provide guidance for the lifting of curved I-girders as well as to maximize stability of partially constructed bridges.

Book Dynamic Analysis and Testing of a Curved Girder Bridge

Download or read book Dynamic Analysis and Testing of a Curved Girder Bridge written by Matthew R. Tilley and published by . This book was released on 2006 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a result of increasing highway construction and expansion, a corresponding need to increase traffic capacity in heavily populated areas, and ever-increasing constraints on available land for transportation use, there has been an increasing demand for alignment geometries and bridge configurations that result in more efficient use of available space. As a result of this demand, there has been a steady increase in the use of curved girder bridges over the past 30 years. Despites extensive research relating to the behavior of these types of structures, a thorough understanding of curved girder bridge response, especially relating to dynamic behavior, is still incomplete. To develop an improved, rational set of design guidelines, the Federal Highway Administration (FHWA) initiated the Curved Steel Bridge Research Project in 1992. As part of this project, FHWA constructed a full-scale model of a curved steel girder bridge at its Turner-Fairbank Structures Laboratory. This full-scale model made it possible to conduct numerous tests and collect a significant amount of data relating to the static behavior of a curved girder bridge. However, relatively little information has been available on the dynamic response of curved girder bridges and this type of information is needed before a complete design specification can be developed. The objective of this study was to develop a finite element model using SAP2000 that could be used for predicting and evaluating the dynamic response of a curved girder bridge. Models of the FHWA curved girder bridge were developed using both beam and shell elements and response information compared with experimental data and with analytical data from other finite element codes. The experimental data were obtained during dynamic testing of the full-scale bridge in the Turner-Fairbank Structures Laboratory and analytical response information was provided from finite element models of the bridge using ANSYS and ABAQUS. The primary focus of the study was the prediction of frequencies and mode shapes of the full-scale curved girder both with and without a deck. Both experimental and analytical frequencies and mode shapes were calculated and compared. Although the more refined ANSYS and ABAQUS models provided response data that compared more favorably with the experimental data, the SAP2000 models were found to be more than adequate for predicting the lower modes and frequencies of the bridge.

Book Design of Steel Concrete Composite Bridges to Eurocodes

Download or read book Design of Steel Concrete Composite Bridges to Eurocodes written by Ioannis Vayas and published by CRC Press. This book was released on 2013-08-29 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining a theoretical background with engineering practice, Design of Steel-Concrete Composite Bridges to Eurocodes covers the conceptual and detailed design of composite bridges in accordance with the Eurocodes. Bridge design is strongly based on prescriptive normative rules regarding loads and their combinations, safety factors, material properties, analysis methods, required verifications, and other issues that are included in the codes. Composite bridges may be designed in accordance with the Eurocodes, which have recently been adopted across the European Union. This book centers on the new design rules incorporated in the EN-versions of the Eurocodes. The book addresses the design for a majority of composite bridge superstructures and guides readers through the selection of appropriate structural bridge systems. It introduces the loads on bridges and their combinations, proposes software supported analysis models, and outlines the required verifications for sections and members at ultimate and serviceability limit states, including fatigue and plate buckling, as well as seismic design of the deck and the bearings. It presents the main types of common composite bridges, discusses structural forms and systems, and describes preliminary design aids and erection methods. It provides information on railway bridges, but through the design examples makes road bridges the focal point. This text includes several design examples within the chapters, explores the structural details, summarizes the relevant design codes, discusses durability issues, presents the properties for structural materials, concentrates on modeling for global analysis, and lays down the rules for the shear connection. It presents fatigue analysis and design, fatigue load models, detail categories, and fatigue verifications for structural steel, reinforcement, concrete, and shear connectors. It also covers structural bearings and dampers, with an emphasis on reinforced elastomeric bearings. The book is appropriate for structural engineering students, bridge designers or practicing engineers converting from other codes to Eurocodes.

Book Stresses in Steel Curved Girder Bridges

Download or read book Stresses in Steel Curved Girder Bridges written by Theodore V. Galambos and published by . This book was released on 1996 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steel curved I-girder bridge systems may be more susceptible to instability during construction than bridges constructed of straight I-girders. The primary goal of this project is to study the behavior of the steel superstructure of curved steel I-girder bridge systems during all phases of construction, and to ascertain whether the linear elastic analysis software used by the Minnesota Department of Transportation (Mn/DOT) during the design process represents well the actual stresses in the bridge. Sixty vibrating wire strain gages were applied to a two-span, four-girder bridge, and the resulting stresses and deflections were compared to computational results for the full construction sequence of the bridge.

Book Composite Action During Construction of Steel Trapezoidal Box Girder Bridges

Download or read book Composite Action During Construction of Steel Trapezoidal Box Girder Bridges written by and published by . This book was released on 2005 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: In steel trapezoidal box girder bridge systems, the U-shaped steel girder is designed to act compositely with the concrete deck to form a closed box for live loading. During the construction stage, however, the behavior is not well understood. The usual practice of assuming the system to be non-composite during construction requires substantial top flange bracing to form a quasi-closed box section. Composite box girders with live loading, and girders during construction, have to be evaluated during the design of curved steel trapezoidal box girder bridges. Considering both cases, the design for construction loading is the least understood and is the most important. Stresses due to construction loading can reach up to 60-70 percent of the total design stress for a given cross section. A three-phase study was undertaken to investigate the behavior of curved trapezoidal box girders during construction.