EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Conceptual Design of Propulsion Systems for Boundary Layer Ingestion

Download or read book Conceptual Design of Propulsion Systems for Boundary Layer Ingestion written by and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Tail integrated Boundary layer Ingesting Propulsion System for Turbo electric Aircraft

Download or read book A Tail integrated Boundary layer Ingesting Propulsion System for Turbo electric Aircraft written by Zhibo Chen (Aeronautics researcher) and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we present conceptual design guidelines and results for a tail-integrated propulsion system for turbo-electric aircraft with boundary layer ingestion (BLI). This includes (i) definition of tail BLI electric fans and (ii) integration of the BLI propulsors on an aircraft tail, to meet the propulsive power requirements and performance goals, i.e. separation-free and shock-free operation with fuel burn reduction, compared with a baseline aircraft for the same mission. The assessment of BLI benefits incorporates CFD and TASOPT analyses, with emphasis placed on utilizing these analyses not only to identify potential challenges for integration of the BLI propulsors, but also to characterize the underlying mechanisms and thus establish the physical rationale for resolving these challenges. The conceptual design resulting from the guidelines has nine BLI propulsors with electric fans on an axisymmetric tail, which is installed on a baseline single-aisle aircraft with twin underwing turbofans without BLI. For the tail-integrated BLI electric fans, the guidelines include the required fan loss buckets, and non-axisymmetric stators, to mitigate the fan efficiency drop due to rotor inlet incidence distortion. The design of the tail-integrated propulsor illustrates the aerodynamics of the propulsor inlet, nacelle, and nozzle that enable separation-free and shock-free operation at the cruise condition. The benefit of the defined tail BLI and twin underwing turbofan aircraft configuration is 10.4% in Propulsion Fuel Energy Intensity (PFEI) at a cruise Mach number of 0.8 and an altitude of 35100 ft, compared to a baseline twin underwing turbofan configuration. The sensitivity study shows that a 1% increase in installed (i.e. with BLI) fan efficiency translates to 0.8% rise in the PFEI benefit.

Book Commercial Aircraft Propulsion and Energy Systems Research

Download or read book Commercial Aircraft Propulsion and Energy Systems Research written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2016-08-09 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.

Book Design of a Model Propulsor for a Boundary Layer Ingesting Aircraft

Download or read book Design of a Model Propulsor for a Boundary Layer Ingesting Aircraft written by Adam Davis Grasch and published by . This book was released on 2013 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents contributions to the analysis and design of propulsion simulators for 1:11 and 1:4 scale model wind tunnel investigations of an advanced civil transport aircraft with boundary layer ingestion (BLI). The electrically powered single-stage propulsors represent the ultra-high bypass ratio turbofan engines on a full-scale conceptual aircraft previously designed at MIT. Powered models will use these propulsors in both podded and boundary layer ingesting configurations to allow back-to-back assessment of BLI benefit. The thesis gives a description of work on propulsion system scaling, nacelle and flowpath aerodynamic optimization, mechanical design of the propulsor and characterization of the propulsor electric motors, all in support of the wind tunnel experiments. Explicit definition is given of those designs that meet the requirements of the program as well as those in which there are items still to be addressed.

Book Analysis of Civil Aircraft Propulsors with Boundary Layer Ingestion

Download or read book Analysis of Civil Aircraft Propulsors with Boundary Layer Ingestion written by David Kenneth Hall and published by . This book was released on 2015 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes (i) guidelines for propulsor sizing, and (ii) strategies for fan turbomachinery conceptual design, for a boundary layer ingesting (BLI) propulsion system for advanced civil transport aircraft. For the former, configuration performance analysis shows BLI yields a reduction in mechanical power required to propel a given aircraft. For the latter, fan turbomachinery design attributes are identified to mitigate the impact of BLI inlet distortion on propulsor performance. The propulsion system requirements are determined using a mechanical energy analysis, in which the performance of the airframe and propulsor are characterized in terms of sources and sinks of power. Using this framework, the propulsor can be sized based on the performance of the isolated airframe. Analysis of the power savings due to BLI (from reduction of viscous dissipation both in the aircraft wake and the propulsor jet) leads to scaling choices for the sizing of propulsor simulators for wind tunnel experiments to assess BLI benefit. Fan stage distortion response is assessed computationally for a range of turbomachinery design parameters and for distortions characteristic of BLI. The numerical results show the importance of three-dimensional flow redistribution upstream of the fan, and indicate that, for the parameters examined, non-axisymmetric fan stators have the largest effect on decreasing blade row velocity distortions and thus mitigating losses due to flow non-uniformity.

Book Computational Investigation of a Boundary layer Ingestion Propulsion System for the Common Research Model

Download or read book Computational Investigation of a Boundary layer Ingestion Propulsion System for the Common Research Model written by Brennan Blumenthal and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis will examine potential propulsive and aerodynamic benefits of integrating a Boundary-layer Ingestion (BLI) propulsion system with a typical commercial aircraft using the Common Research Model geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment will be used to generate engine conditions for CFD analysis. Improvements to the BLI geometry will be made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Previous studies have shown reductions of up to 25% in terms of propulsive power required for cruise for other axisymmetric geometries using the BLI concept. An analysis of engine power requirements, drag, and lift coefficients using the baseline and BLI geometries coupled with the NPSS model are shown. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown and any improvements between subsequent BLI designs presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet and an angle of attack of 2° for all geometries. A comparison between available wind tunnel data, previous computational results, and the original CRM model is presented for model verification purposes along with full results for BLI power savings. Results indicate a 14.3% reduction in engine power requirements at cruise for the BLI configuration over the baseline geometry. Minor shaping of the aft portion of the fuselage using CDISC has been shown to increase the benefit from boundary-layer ingestion further, resulting in a 15.6% reduction in power requirements for cruise as well as a drag reduction of eighteen counts over the baseline geometry.

Book Distributed Propulsion Technology

Download or read book Distributed Propulsion Technology written by Amir S. Gohardani and published by Nova Science Publishers. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed propulsion technology is one of the revolutionary candidates for future aircraft propulsion. In this book, which serves as the very first reference book on distributed propulsion technology, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles, commercial aircrafts, and military aircrafts, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-its-kind comparison between commercial and military aircrafts employing distributed propulsion arrangements. In light of propulsionairframe integration and complementary technologies, such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircrafts. Moreover, a diverse set of distributed propulsion arrangements are considered. These include: small engines, gas-driven multi-fan architectures, turboelectric systems featuring superconductive and non-superconducting electrical machine technology, and electromagnetic fans. This book features contributions by the National Aeronautics and Space Administration (NASA) and the United States Air Force (USAF), and includes the first proposed official definition for distributed propulsion technology in subsonic fixed wing aircrafts.

Book Aerial Robots

    Book Details:
  • Author : Omar D Lopez Mejia
  • Publisher : BoD – Books on Demand
  • Release : 2017-09-06
  • ISBN : 9535134639
  • Pages : 196 pages

Download or read book Aerial Robots written by Omar D Lopez Mejia and published by BoD – Books on Demand. This book was released on 2017-09-06 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few years ago, the topic of aerial robots was exclusively related to the robotics community, so a great number of books about the dynamics and control of aerial robots and UAVs have been written. As the control technology for UAVs advances, the great interaction that exists between other systems and elements that are as important as control such as aerodynamics, energy efficiency, acoustics, structural integrity, and applications, among others has become evident. Aerial Robots - Aerodynamics, Control, and Applications is an attempt to bring some of these topics related to UAVs together in just one book and to look at a selection of the most relevant problems of UAVs in a broader engineering perspective.

Book Future Propulsion Systems and Energy Sources in Sustainable Aviation

Download or read book Future Propulsion Systems and Energy Sources in Sustainable Aviation written by Saeed Farokhi and published by John Wiley & Sons. This book was released on 2020-01-21 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of the science and engineering behind future propulsion systems and energy sources in sustainable aviation Future Propulsion Systems and Energy Sources in Sustainable Aviation is a comprehensive reference that offers a review of the science and engineering principles that underpin the concepts of propulsion systems and energy sources in sustainable air transportation. The author, a noted expert in the field, examines the impact of air transportation on the environment and reviews alternative jet fuels, hybrid-electric and nuclear propulsion and power. He also explores modern propulsion for transonic and supersonic-hypersonic aircraft and the impact of propulsion on aircraft design. Climate change is the main driver for the new technology development in sustainable air transportation. The book contains critical review of gas turbine propulsion and aircraft aerodynamics; followed by an insightful presentation of the aviation impact on environment. Future fuels and energy sources are introduced in a separate chapter. Promising technologies in propulsion and energy sources are identified leading to pathways to sustainable aviation. To facilitate the utility of the subject, the book is accompanied by a website that contains illustrations, and equation files. This important book: Contains a comprehensive reference to the science and engineering behind propulsion and power in sustainable air transportation Examines the impact of air transportation on the environment Covers alternative jet fuels and hybrid-electric propulsion and power Discusses modern propulsion for transonic, supersonic and hypersonic aircraft Examines the impact of propulsion system integration on aircraft design Written for engineers, graduate and senior undergraduate students in mechanical and aerospace engineering, Future Propulsion Systems and Energy Sources in Sustainable Aviation explores the future of aviation with a guide to sustainable air transportation that includes alternative jet fuels, hybrid-electric propulsion, all-electric and nuclear propulsion.

Book Performance of a Boundary Layer Ingesting Propulsion System

Download or read book Performance of a Boundary Layer Ingesting Propulsion System written by Angélique Pascale Plas and published by . This book was released on 2006 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) In terms of qualitative information, the three models are found to give broadly similar trends for distortion attenuation and for fuel burn benefit. In terms of quantitative results, the body force analysis shows that for a fan diameter and flight condition representative of that employed in the Cambridge-MIT Institute "Silent Aircraft" boundary layer ingestion can provide decreases in fuel burn of up to 3.8 percent.

Book Conceptual Design of a Supersonic Business Jet Propulsion System

Download or read book Conceptual Design of a Supersonic Business Jet Propulsion System written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-19 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent co

Book Aerospace Propulsion Systems

Download or read book Aerospace Propulsion Systems written by Thomas A. Ward and published by John Wiley & Sons. This book was released on 2010-05-17 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerospace Propulsion Systems is a unique book focusing on each type of propulsion system commonly used in aerospace vehicles today: rockets, piston aero engines, gas turbine engines, ramjets, and scramjets. Dr. Thomas A. Ward introduces each system in detail, imparting an understanding of basic engineering principles, describing key functionality mechanisms used in past and modern designs, and provides guidelines for student design projects. With a balance of theory, fundamental performance analysis, and design, the book is specifically targeted to students or professionals who are new to the field and is arranged in an intuitive, systematic format to enhance learning. Covers all engine types, including piston aero engines Design principles presented in historical order for progressive understanding Focuses on major elements to avoid overwhelming or confusing readers Presents example systems from the US, the UK, Germany, Russia, Europe, China, Japan, and India Richly illustrated with detailed photographs Cartoon panels present the subject in an interesting, easy-to-understand way Contains carefully constructed problems (with a solution manual available to the educator) Lecture slides and additional problem sets for instructor use Advanced undergraduate students, graduate students and engineering professionals new to the area of propulsion will find Aerospace Propulsion Systems a highly accessible guide to grasping the key essentials. Field experts will also find that the book is a very useful resource for explaining propulsion issues or technology to engineers, technicians, businessmen, or policy makers. Post-graduates involved in multi-disciplinary research or anybody interested in learning more about spacecraft, aircraft, or engineering would find this book to be a helpful reference. Lecture materials for instructors available at www.wiley.com/go/wardaero

Book Introduction to the Theory of Flow Machines

Download or read book Introduction to the Theory of Flow Machines written by Albert Betz and published by Elsevier. This book was released on 2014-05-16 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Theory of Flow Machines details the fundamental processes and the relations that have a significant influence in the operating mechanism of flow machines. The book first covers the general consideration in flow machines, such as pressure, stress, and cavitation. In the second chapter, the text deals with ducts; this chapter discusses the general remarks, types of flow, and mixing process. Next, the book tackles the types of cascades, along with its concerns. The closing chapter covers the flow machine and its components, such as turbine, wheels, engines, and propellers. The text will be of great use to mechanical engineers and technicians.

Book Power Based Study of Boundary Layer Ingestion for Aircraft Application

Download or read book Power Based Study of Boundary Layer Ingestion for Aircraft Application written by Peijian Lv and published by Springer Nature. This book was released on 2022-09-14 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents research on Boundary Layer Ingestion (BLI). BLI is an aircraft-engine integration technique that aims at integrating the aircraft and the propulsion system such that the overall aircraft fuel consumption can be reduced. In this research, theoretical analysis suggests that the minimization of total power consumption should be used as a design criterion for aircraft utilizing BLI rather than focusing on the minimization of drag. Numerical simulations are performed, and the simulation results are processed using the PBM to support the theoretical analysis. Furthermore, an experimental study is carried out with a focus on the power conversion processes involved for a propulsor operating in the wake. Stereoscopic PIV is employed in order to visualize the flow and understand the physics. The so-called Power-based Method is used to quantify the power conversion mechanisms. The results prove that the dominant mechanism responsible for the efficiency enhancement is due to the utilization of body wake energy by the wake ingesting propeller. In short, the importance of wake energy flow rate in understanding the BLI phenomenon is highlighted. This book will be useful for researchers in the field of aircraft propulsion, aircraft aerodynamics, and airframe propulsion integration.

Book Aircraft Design Projects

Download or read book Aircraft Design Projects written by Lloyd R. Jenkinson and published by Elsevier. This book was released on 2003-04-28 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written with students of aerospace or aeronautical engineering firmly in mind, this is a practical and wide-ranging book that draws together the various theoretical elements of aircraft design - structures, aerodynamics, propulsion, control and others - and guides the reader in applying them in practice. Based on a range of detailed real-life aircraft design projects, including military training, commercial and concept aircraft, the experienced UK and US based authors present engineering students with an essential toolkit and reference to support their own project work.All aircraft projects are unique and it is impossible to provide a template for the work involved in the design process. However, with the knowledge of the steps in the initial design process and of previous experience from similar projects, students will be freer to concentrate on the innovative and analytical aspects of their course project. The authors bring a unique combination of perspectives and experience to this text. It reflects both British and American academic practices in teaching aircraft design. Lloyd Jenkinson has taught aircraft design at both Loughborough and Southampton universities in the UK and Jim Marchman has taught both aircraft and spacecraft design at Virginia Tech in the US.* Demonstrates how basic aircraft design processes can be successfully applied in reality* Case studies allow both student and instructor to examine particular design challenges * Covers commercial and successful student design projects, and includes over 200 high quality illustrations

Book Conceptual Design of a Lars Based Propulsion System

Download or read book Conceptual Design of a Lars Based Propulsion System written by H. Ludewig and published by . This book was released on 1991 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Methods for Propulsion System Integration in Aircraft Conceptual Design

Download or read book Advanced Methods for Propulsion System Integration in Aircraft Conceptual Design written by Arne Seitz and published by . This book was released on 2012 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: