EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book CONCEPT HIERARCHY BASED PATTERN DISCOVERY IN TIME SERIES DATABASE  A CASE STUDY ON FINANCIAL DATABASE

Download or read book CONCEPT HIERARCHY BASED PATTERN DISCOVERY IN TIME SERIES DATABASE A CASE STUDY ON FINANCIAL DATABASE written by Yan-Ping Huang and published by 黃燕萍工作室. This book was released on 2014-07-25 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining, a recent and contemporary research topic, is the process of automatically searching large volumes of data for patterns in computing. Nowadays, pattern discovery is a field within the area of data mining. In general, large volumes of time series data are contained in financial database and these data have some useful patterns which could not be found easily. Many financial studies in time series data analysis use linear regression model to estimate the variation and trend of the data. However, traditional methods of time series analysis used special types or linear models to describe the data. Linear models can achieve high accuracy when linear variation of the data is small, however, if the variation range exceeds a certain limit, the linear models has a lower performance in estimated accuracy. Among these traditional methods, SOM (Self Organizing Map) is a well-known non-linear model to extract pattern with numeric data. Many researches extract pattern from numeric data attributes rather than categorical or mixed data. It does not extract the major values from pattern rules, either. The purpose of this study is to provide a novel architecture in mining patterns from mixed data that uses a systematic approach in the financial database information mining, and try to find the patterns for estimate the trend or for special event’s occurrence. This present study employs ESA algorithm which integrates both EViSOM algorithm and EAOI algorithm. EViSOM algorithm is used to calculate the distance between the categorical and numeric data for pattern finding, whereas EAOI algorithm serves to generalize major values using conceptual hierarchies for patterns and major values extraction in financial database. The attempt of using ESA algorithm in this study is to discover the pattern in the Concept Hierarchy based Pattern Discovery (CHPD) architecture. Specifically, this architecture facilitates the direct handling of mixed data, including categorical and numeric values. This mining architecture is able to simulate human intelligence and discover patterns automatically, and it also demonstrates knowledge pattern discovery and rule extraction.

Book Data Mining in Time Series Databases

Download or read book Data Mining in Time Series Databases written by Abraham Kandel and published by World Scientific. This book was released on 2004 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adding the time dimension to real-world databases produces Time SeriesDatabases (TSDB) and introduces new aspects and difficulties to datamining and knowledge discovery. This book covers the state-of-the-artmethodology for mining time series databases. The novel data miningmethods presented in the book include techniques for efficientsegmentation, indexing, and classification of noisy and dynamic timeseries. A graph-based method for anomaly detection in time series isdescribed and the book also studies the implications of a novel andpotentially useful representation of time series as strings. Theproblem of detecting changes in data mining models that are inducedfrom temporal databases is additionally discussed.

Book Pattern Classification

Download or read book Pattern Classification written by Richard O. Duda and published by John Wiley & Sons. This book was released on 2012-11-09 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

Book Principles of Data Mining

Download or read book Principles of Data Mining written by David J. Hand and published by MIT Press. This book was released on 2001-08-17 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

Book Data Mining  Concepts and Techniques

Download or read book Data Mining Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Book High Performance Discovery In Time Series

Download or read book High Performance Discovery In Time Series written by New York University and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a technical survey of concepts and techniques for describing and analyzing large-scale time-series data streams. Some topics covered are algorithms for query by humming, gamma-ray burst detection, pairs trading, and density detection. Included are self-contained descriptions of wavelets, fast Fourier transforms, and sketches as they apply to time-series analysis. Detailed applications are built on a solid scientific basis.

Book Encyclopedia of Data Warehousing and Mining

Download or read book Encyclopedia of Data Warehousing and Mining written by Wang, John and published by IGI Global. This book was released on 2005-06-30 with total page 1382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.

Book Data Mining  Introductory And Advanced Topics

Download or read book Data Mining Introductory And Advanced Topics written by Margaret H Dunham and published by Pearson Education India. This book was released on 2006-09 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Mining and Knowledge Discovery Handbook

Download or read book Data Mining and Knowledge Discovery Handbook written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Book Data Clustering  Theory  Algorithms  and Applications  Second Edition

Download or read book Data Clustering Theory Algorithms and Applications Second Edition written by Guojun Gan and published by SIAM. This book was released on 2020-11-10 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.

Book The Analytics Lifecycle Toolkit

Download or read book The Analytics Lifecycle Toolkit written by Gregory S. Nelson and published by John Wiley & Sons. This book was released on 2018-03-07 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: An evidence-based organizational framework for exceptional analytics team results The Analytics Lifecycle Toolkit provides managers with a practical manual for integrating data management and analytic technologies into their organization. Author Gregory Nelson has encountered hundreds of unique perspectives on analytics optimization from across industries; over the years, successful strategies have proven to share certain practices, skillsets, expertise, and structural traits. In this book, he details the concepts, people and processes that contribute to exemplary results, and shares an organizational framework for analytics team functions and roles. By merging analytic culture with data and technology strategies, this framework creates understanding for analytics leaders and a toolbox for practitioners. Focused on team effectiveness and the design thinking surrounding product creation, the framework is illustrated by real-world case studies to show how effective analytics team leadership works on the ground. Tools and templates include best practices for process improvement, workforce enablement, and leadership support, while guidance includes both conceptual discussion of the analytics life cycle and detailed process descriptions. Readers will be equipped to: Master fundamental concepts and practices of the analytics life cycle Understand the knowledge domains and best practices for each stage Delve into the details of analytical team processes and process optimization Utilize a robust toolkit designed to support analytic team effectiveness The analytics life cycle includes a diverse set of considerations involving the people, processes, culture, data, and technology, and managers needing stellar analytics performance must understand their unique role in the process of winnowing the big picture down to meaningful action. The Analytics Lifecycle Toolkit provides expert perspective and much-needed insight to managers, while providing practitioners with a new set of tools for optimizing results.

Book Social Science Research

    Book Details:
  • Author : Anol Bhattacherjee
  • Publisher : CreateSpace
  • Release : 2012-04-01
  • ISBN : 9781475146127
  • Pages : 156 pages

Download or read book Social Science Research written by Anol Bhattacherjee and published by CreateSpace. This book was released on 2012-04-01 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.

Book Data Mining and Predictive Analytics

Download or read book Data Mining and Predictive Analytics written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2015-02-19 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Book Data Mining and Data Warehousing

Download or read book Data Mining and Data Warehousing written by Parteek Bhatia and published by Cambridge University Press. This book was released on 2019-06-27 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.

Book Data Preparation for Data Mining

Download or read book Data Preparation for Data Mining written by Dorian Pyle and published by Morgan Kaufmann. This book was released on 1999-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.

Book The Text Mining Handbook

Download or read book The Text Mining Handbook written by Ronen Feldman and published by Cambridge University Press. This book was released on 2007 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher description

Book Knowledge Discovery from Data Streams

Download or read book Knowledge Discovery from Data Streams written by Joao Gama and published by CRC Press. This book was released on 2010-05-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents