Download or read book Computer Vision and Machine Learning in Agriculture written by Mohammad Shorif Uddin and published by Springer Nature. This book was released on 2021-03-23 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses computer vision, a noncontact as well as a nondestructive technique involving the development of theoretical and algorithmic tools for automatic visual understanding and recognition which finds huge applications in agricultural productions. It also entails how rendering of machine learning techniques to computer vision algorithms is boosting this sector with better productivity by developing more precise systems. Computer vision and machine learning (CV-ML) helps in plant disease assessment along with crop condition monitoring to control the degradation of yield, quality, and severe financial loss for farmers. Significant scientific and technological advances have been made in defect assessment, quality grading, disease recognition, pests, insects, fruits, and vegetable types recognition and evaluation of a wide range of agricultural plants, crops, leaves, and fruits. The book discusses intelligent robots developed with the touch of CV-ML which can help farmers to perform various tasks like planting, weeding, harvesting, plant health monitoring, and so on. The topics covered in the book include plant, leaf, and fruit disease detection, crop health monitoring, applications of robots in agriculture, precision farming, assessment of product quality and defects, pest, insect, fruits, and vegetable types recognition.
Download or read book Computer Vision and Machine Learning in Agriculture Volume 2 written by Mohammad Shorif Uddin and published by Springer Nature. This book was released on 2022-03-13 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is as an extension of previous book “Computer Vision and Machine Learning in Agriculture” for academicians, researchers, and professionals interested in solving the problems of agricultural plants and products for boosting production by rendering the advanced machine learning including deep learning tools and techniques to computer vision algorithms. The book contains 15 chapters. The first three chapters are devoted to crops harvesting, weed, and multi-class crops detection with the help of robots and UAVs through machine learning and deep learning algorithms for smart agriculture. Next, two chapters describe agricultural data retrievals and data collections. Chapters 6, 7, 8 and 9 focuses on yield estimation, crop maturity detection, agri-food product quality assessment, and medicinal plant recognition, respectively. The remaining six chapters concentrates on optimized disease recognition through computer vision-based machine and deep learning strategies.
Download or read book Artificial Intelligence in Agriculture written by Rajesh Singh and published by CRC Press. This book was released on 2021-11-23 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a platform for anyone who wishes to explore Artificial Intelligence in the field of agriculture from scratch or broaden their understanding and its uses. This book offers a practical, hands-on exploration of Artificial Intelligence, machine learning, deep Learning, computer vision and Expert system with proper examples to understand. This book also covers the basics of python with example so that any anyone can easily understand and utilize artificial intelligence in agriculture field. This book is divided into two parts wherein first part talks about the artificial intelligence and its impact in the agriculture with all its branches and their basics. The second part of the book is purely implementation of algorithms and use of different libraries of machine learning, deep learning and computer vision to build useful and sightful projects in real time which can be very useful for you to have better understanding of artificial intelligence. After reading this book, the reader will an understanding of what Artificial Intelligence is, where it is applicable, and what are its different branches, which can be useful in different scenarios. The reader will be familiar with the standard workflow for approaching and solving machine-learning problems, and how to address commonly encountered issues. The reader will be able to use Artificial Intelligence to tackle real-world problems ranging from crop health prediction to field surveillance analytics, classification to recognition of species of plants etc. Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.
Download or read book Computer Vision Based Agriculture Engineering written by Han Zhongzhi and published by CRC Press. This book was released on 2019-09-16 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, computer vision is a fast-growing technique of agricultural engineering, especially in quality detection of agricultural products and food safety testing. It can provide objective, rapid, non-contact and non-destructive methods by extracting quantitative information from digital images. Significant scientific and technological advances have been made in quality inspection, classification and evaluation of a wide range of food and agricultural products. Computer Vision-Based Agriculture Engineering focuses on these advances. The book contains 25 chapters covering computer vision, image processing, hyperspectral imaging and other related technologies in peanut aflatoxin, peanut and corn quality varieties, and carrot and potato quality, as well as pest and disease detection. Features: Discusses various detection methods in a variety of agricultural crops Each chapter includes materials and methods used, results and analysis, and discussion with conclusions Covers basic theory, technical methods and engineering cases Provides comprehensive coverage on methods of variety identification, quality detection and detection of key indicators of agricultural products safety Presents information on technology of artificial intelligence including deep learning and transfer learning Computer Vision-Based Agriculture Engineering is a summary of the author's work over the past 10 years. Professor Han has presented his most recent research results in all 25 chapters of this book. This unique work provides students, engineers and technologists working in research, development, and operations in agricultural engineering with critical, comprehensive and readily accessible information. It applies development of artificial intelligence theory and methods including depth learning and transfer learning to the field of agricultural engineering testing.
Download or read book Computer Vision and Machine Learning in Agriculture Volume 3 written by Jagdish Chand Bansal and published by Springer Nature. This book was released on 2023-07-31 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is as an extension of the previous two volumes on “Computer Vision and Machine Learning in Agriculture”. This volume 3 discusses solutions to the problems of agricultural production by rendering advanced machine learning including deep learning tools and techniques. The book contains 13 chapters that focus on in-depth research outputs in precision agriculture, crop farming, horticulture, floriculture, vertical farming, animal husbandry, disease detection, plant recognition, production yield, product quality, defect assessment, and overall automation through robots and drones. The topics covered in the current volume, along with the previous volumes, are comprehensive literature for both beginners and experienced in this domain.
Download or read book Emerging Technology in Modelling and Graphics written by Jyotsna Kumar Mandal and published by Springer. This book was released on 2019-07-16 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers cutting-edge and advanced research in modelling and graphics. Gathering high-quality papers presented at the First International Conference on Emerging Technology in Modelling and Graphics, held from 6 to 8 September 2018 in Kolkata, India, it addresses topics including: image processing and analysis, image segmentation, digital geometry for computer imaging, image and security, biometrics, video processing, medical imaging, and virtual and augmented reality.
Download or read book Data Science in Agriculture and Natural Resource Management written by G. P. Obi Reddy and published by Springer Nature. This book was released on 2021-10-11 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to address emerging challenges in the field of agriculture and natural resource management using the principles and applications of data science (DS). The book is organized in three sections, and it has fourteen chapters dealing with specialized areas. The chapters are written by experts sharing their experiences very lucidly through case studies, suitable illustrations and tables. The contents have been designed to fulfil the needs of geospatial, data science, agricultural, natural resources and environmental sciences of traditional universities, agricultural universities, technological universities, research institutes and academic colleges worldwide. It will help the planners, policymakers and extension scientists in planning and sustainable management of agriculture and natural resources. The authors believe that with its uniqueness the book is one of the important efforts in the contemporary cyber-physical systems.
Download or read book Modern Techniques for Agricultural Disease Management and Crop Yield Prediction written by Pradeep, N. and published by IGI Global. This book was released on 2019-08-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since agriculture is one of the key parameters in assessing the gross domestic product (GDP) of any country, it has become crucial to transition from traditional agricultural practices to smart agriculture. New agricultural technologies provide numerous opportunities to maximize crop yield by recognizing and analyzing diseases and other natural variables that may affect it. Therefore, it is necessary to understand how computer-assisted technologies can best be utilized and adopted in the conversion to smart agriculture. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction is an essential publication that widens the spectrum of computational methods that can aid in agriculture disease management, weed detection, and crop yield prediction. Featuring coverage on a wide range of topics such as soil and crop sensors, swarm robotics, and weed detection, this book is ideally designed for environmentalists, farmers, botanists, agricultural engineers, computer engineers, scientists, researchers, practitioners, and students seeking current research on technology and techniques for agricultural diseases and predictive trends.
Download or read book Deep Learning Applications and Intelligent Decision Making in Engineering written by Senthilnathan, Karthikrajan and published by IGI Global. This book was released on 2020-10-23 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning includes a subset of machine learning for processing the unsupervised data with artificial neural network functions. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. When applied to engineering, deep learning can have a great impact on the decision-making process. Deep Learning Applications and Intelligent Decision Making in Engineering is a pivotal reference source that provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is ideally designed for engineers, computer scientists, programmers, software engineers, research scholars, IT professionals, academicians, and postgraduate students seeking current research on the implementation of automation and deep learning in various engineering disciplines.
Download or read book Deep Learning for Sustainable Agriculture written by Ramesh Chandra Poonia and published by Academic Press. This book was released on 2022-01-09 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition monitoring, and many other issues in the field of agriculture. agriculture. Deep Learning for Sustainable Agriculture discusses topics such as the impactful role of deep learning during the analysis of sustainable agriculture data and how deep learning can help farmers make better decisions. It also considers the latest deep learning techniques for effective agriculture data management, as well as the standards established by international organizations in related fields. The book provides advanced students and professionals in agricultural science and engineering, geography, and geospatial technology science with an in-depth explanation of the relationship between agricultural inference and the decision-support amenities offered by an advanced mathematical evolutionary algorithm. - Introduces new deep learning models developed to address sustainable solutions for issues related to agriculture - Provides reviews on the latest intelligent technologies and algorithms related to the state-of-the-art methodologies of monitoring and mitigation of sustainable agriculture - Illustrates through case studies how deep learning has been used to address a variety of agricultural diseases that are currently on the cutting edge - Delivers an accessible explanation of artificial intelligence algorithms, making it easier for the reader to implement or use them in their own agricultural domain
Download or read book Machine Learning in Computer Vision written by Nicu Sebe and published by Springer Science & Business Media. This book was released on 2005-10-04 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Download or read book Applications of Image Processing and Soft Computing Systems in Agriculture written by Razmjooy, Navid and published by IGI Global. This book was released on 2019-02-22 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: The variety and abundance of qualitative characteristics of agricultural products have been the main reasons for the development of different types of non-destructive methods (NDTs). Quality control of these products is one of the most important tasks in manufacturing processes. The use of control and automation has become more widespread, and new approaches provide opportunities for production competition through new technologies. Applications of Image Processing and Soft Computing Systems in Agriculture examines applications of artificial intelligence in agriculture and the main uses of shape analysis on agricultural products such as relationships between form and genetics, adaptation, product characteristics, and product sorting. Additionally, it provides insights developed through computer vision techniques. Highlighting such topics as deep learning, agribusiness, and augmented reality, it is designed for academicians, researchers, agricultural practitioners, and industry professionals.
Download or read book Practical Machine Learning for Computer Vision written by Valliappa Lakshmanan and published by "O'Reilly Media, Inc.". This book was released on 2021-07-21 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Download or read book Internet of Things and Machine Learning in Agriculture written by Jyotir Moy Chatterjee and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-02-08 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agriculture is one of the most fundamental human activities. As the farming capacity has expanded, the usage of resources such as land, fertilizer, and water has grown exponentially, and environmental pressures from modern farming techniques have stressed natural landscapes. Still, by some estimates, worldwide food production needs to increase to keep up with global food demand. Machine Learning and the Internet of Things can play a promising role in the Agricultural industry, and help to increase food production while respecting the environment. This book explains how these technologies can be applied, offering many case studies developed in the research world.
Download or read book Artificial Intelligence and Smart Agriculture Technology written by Utku Kose and published by CRC Press. This book was released on 2022-06-27 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was created with the intention of informing an international audience about the latest technological aspects for developing smart agricultural applications. As artificial intelligence (AI) takes the main role in this, the majority of the chapters are associated with the role of AI and data analytics components for better agricultural applications. The first two chapters provide alternative, wide reviews of the use of AI, robotics, and the Internet of Things as effective solutions to agricultural problems. The third chapter looks at the use of blockchain technology in smart agricultural scenarios. In the fourth chapter, a future view is provided of an Internet of Things-oriented sustainable agriculture. Next, the fifth chapter provides a governmental evaluation of advanced farming technologies, and the sixth chapter discusses the role of big data in smart agricultural applications. The role of the blockchain is evaluated in terms of an industrial view under the seventh chapter, and the eighth chapter provides a discussion of data mining and data extraction, which is essential for better further analysis by smart tools. The ninth chapter evaluates the use of machine learning in food processing and preservation, which is a critical issue for dealing with issues concerns regarding insufficient foud sources. The tenth chapter also discusses sustainability, and the eleventh chapter focuses on the problem of plant disease prediction, which is among the critical agricultural issues. Similarly, the twelfth chapter considers the use of deep learning for classifying plant diseases. Finally, the book ends with a look at cyber threats to farming automation in the thirteenth chapter and a case study of India for a better, smart, and sustainable agriculture in the fourteenth chapter. This book presents the most critical research topics of today’s smart agricultural applications and provides a valuable view for both technological knowledge and ability that will be helpful to academicians, scientists, students who are the future of science, and industrial practitioners who collaborate with academia.
Download or read book Computer Vision Technology for Food Quality Evaluation written by Da-Wen Sun and published by Elsevier. This book was released on 2011-04-28 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book in this rapidly expanding area, Computer Vision Technology for Food Quality Evaluation thoroughly discusses the latest advances in image processing and analysis. Computer vision has attracted much research and development attention in recent years and, as a result, significant scientific and technological advances have been made in quality inspection, classification and evaluation of a wide range of food and agricultural products. This unique work provides engineers and technologists working in research, development, and operations in the food industry with critical, comprehensive and readily accessible information on the art and science of computer vision technology. Undergraduate and postgraduate students and researchers in universities and research institutions will also find this an essential reference source.· Discusses novel technology for recognizing objects and extracting quantitative information from digital images in order to provide objective, rapid, non-contact and non-destructive quality evaluation. · International authors with both academic and professional credentials address in detail one aspect of the relevant technology per chapter making this ideal for textbook use· Divided into three parts, it begins with an outline of the fundamentals of the technology, followed by full coverage of the application in the most researched areas of meats and other foods, fruits, vegetables and grains.
Download or read book Computer Vision and Machine Learning in Agriculture written by Mohammad Shorif Uddin and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses computer vision, a noncontact as well as a nondestructive technique involving the development of theoretical and algorithmic tools for automatic visual understanding and recognition which finds huge applications in agricultural productions. It also entails how rendering of machine learning techniques to computer vision algorithms is boosting this sector with better productivity by developing more precise systems. Computer vision and machine learning (CV-ML) helps in plant disease assessment along with crop condition monitoring to control the degradation of yield, quality, and severe financial loss for farmers. Significant scientific and technological advances have been made in defect assessment, quality grading, disease recognition, pests, insects, fruits, and vegetable types recognition and evaluation of a wide range of agricultural plants, crops, leaves, and fruits. The book discusses intelligent robots developed with the touch of CV-ML which can help farmers to perform various tasks like planting, weeding, harvesting, plant health monitoring, and so on. The topics covered in the book include plant, leaf, and fruit disease detection, crop health monitoring, applications of robots in agriculture, precision farming, assessment of product quality and defects, pest, insect, fruits, and vegetable types recognition.