Download or read book Computational Physics 2nd edition written by Nicholas J. Giordano and published by Pearson Education India. This book was released on 2012 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Physics written by Philipp Scherer and published by Springer Science & Business Media. This book was released on 2013-07-17 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. The first part of the book discusses the basic numerical methods. The second part concentrates on simulation of classical and quantum systems. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multi-step methods and the class of Verlet methods, which is introduced by studying the motion in Liouville space. A general chapter on the numerical treatment of differential equations provides methods of finite differences, finite volumes, finite elements and boundary elements together with spectral methods and weighted residual based methods. The book gives simple but non trivial examples from a broad range of physical topics trying to give the reader insight into not only the numerical treatment but also simulated problems. Different methods are compared with regard to their stability and efficiency. The exercises in the book are realised as computer experiments.
Download or read book Computational Physics written by Jos Thijssen and published by Cambridge University Press. This book was released on 2007-03-22 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 2007, this second edition is for graduate students and researchers in theoretical, computational and experimental physics.
Download or read book An Introduction to Computational Physics written by Tao Pang and published by Cambridge University Press. This book was released on 2006-01-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced textbook provides an introduction to the basic methods of computational physics.
Download or read book A First Course in Computational Physics written by Paul DeVries and published by Jones & Bartlett Learning. This book was released on 2011-01-28 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) ? 2011 IEEE, Published by the IEEE Computer Society
Download or read book Numerical Methods for Physics written by Alejando L. Garcia and published by Createspace Independent Publishing Platform. This book was released on 2015-06-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a broad spectrum of the most important, basic numerical and analytical techniques used in physics -including ordinary and partial differential equations, linear algebra, Fourier transforms, integration and probability. Now language-independent. Features attractive new 3-D graphics. Offers new and significantly revised exercises. Replaces FORTRAN listings with C++, with updated versions of the FORTRAN programs now available on-line. Devotes a third of the book to partial differential equations-e.g., Maxwell's equations, the diffusion equation, the wave equation, etc. This numerical analysis book is designed for the programmer with a physics background. Previously published by Prentice Hall / Addison-Wesley
Download or read book Effective Computation in Physics written by Anthony Scopatz and published by "O'Reilly Media, Inc.". This book was released on 2015-06-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures
Download or read book Basic Concepts in Computational Physics written by Benjamin A. Stickler and published by Springer. This book was released on 2016-03-21 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.
Download or read book Information Physics and Computation written by Marc Mézard and published by Oxford University Press. This book was released on 2009-01-22 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
Download or read book Numerical Methods in Physics with Python written by Alex Gezerlis and published by Cambridge University Press. This book was released on 2023-07-31 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: A standalone text on computational physics combining idiomatic Python, foundational numerical methods, and physics applications.
Download or read book Computational Physics written by Mark E. J. Newman and published by Createspace Independent Publishing Platform. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the fundamentals of computational physics and describes the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher. The book begins with an introduction to Python, then moves on to a step-by-step description of the techniques of computational physics, with examples ranging from simple mechanics problems to complex calculations in quantum mechanics, electromagnetism, statistical mechanics, and more.
Download or read book Computational Physics written by Franz J. Vesely and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author Franz J. Vesely offers students an introductory text on computational physics, providing them with the important basic numerical/computational techniques. His unique text sets itself apart from others by focusing on specific problems of computational physics. The author also provides a selection of modern fields of research. Students will benefit from the appendixes which offer a short description of some properties of computing and machines and outline the technique of 'Fast Fourier Transformation.'
Download or read book Stochastic Numerics for Mathematical Physics written by Grigori N. Milstein and published by Springer Nature. This book was released on 2021-12-03 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.
Download or read book Computational Physics written by Joseph Marie Thijssen and published by Cambridge University Press. This book was released on 1999-06-17 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes computational methods used in theoretical physics with emphasis on condensed matter applications.
Download or read book Quantum Wells Wires and Dots written by Paul Harrison and published by John Wiley & Sons. This book was released on 2005-10-31 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Wells, Wires and Dots Second Edition: Theoretical andComputational Physics of Semiconductor Nanostructures providesall the essential information, both theoretical and computational,for complete beginners to develop an understanding of how theelectronic, optical and transport properties of quantum wells,wires and dots are calculated. Readers are lead through a series ofsimple theoretical and computational examples giving solidfoundations from which they will gain the confidence to initiatetheoretical investigations or explanations of their own. Emphasis on combining the analysis and interpretation ofexperimental data with the development of theoretical ideas Complementary to the more standard texts Aimed at the physics community at large, rather than just thelow-dimensional semiconductor expert The text present solutions for a large number of realsituations Presented in a lucid style with easy to follow steps related toaccompanying illustrative examples
Download or read book Computational Materials Science written by June Gunn Lee and published by CRC Press. This book was released on 2016-11-25 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.
Download or read book Introduction to Computational Science written by Angela B. Shiflet and published by Princeton University Press. This book was released on 2014-03-30 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors