Download or read book Computational Neuroscience Cortical Dynamics written by Péter Érdi and published by Springer Science & Business Media. This book was released on 2004-08-03 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents thoroughly revised tutorial papers based on lectures given by leading researchers at the 8th International Summer School on Neural Networks in Erice, Italy, in October/November 2003. The eight tutorial papers presented provide competent coverage of the field of cortical dynamics, consolidating recent theoretical and experimental results on the processing, transmission, and imprinting of information in the brain as well as on important functions of the cortical area, such as cortical rhythms, cortical neural plasticity, and their structural basis and functional significance. The book is divided in two topical sections on fundamentals of cortical dynamics and mathematical models of cortical dynamics.
Download or read book Computational Neuroscience written by Eric L. Schwartz and published by MIT Press. This book was released on 1993-08-26 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thirty original contributions in this book provide a working definition of"computational neuroscience" as the area in which problems lie simultaneously within computerscience and neuroscience. They review this emerging field in historical and philosophical overviewsand in stimulating summaries of recent results. Leading researchers address the structure of thebrain and the computational problems associated with describing and understanding this structure atthe synaptic, neural, map, and system levels.The overview chapters discuss the early days of thefield, provide a philosophical analysis of the problems associated with confusion between brainmetaphor and brain theory, and take up the scope and structure of computationalneuroscience.Synaptic-level structure is addressed in chapters that relate the properties ofdendritic branches, spines, and synapses to the biophysics of computation and provide a connectionbetween real neuron architectures and neural network simulations.The network-level chapters take upthe preattentive perception of 3-D forms, oscillation in neural networks, the neurobiologicalsignificance of new learning models, and the analysis of neural assemblies and local learningrides.Map-level structure is explored in chapters on the bat echolocation system, cat orientationmaps, primate stereo vision cortical cognitive maps, dynamic remapping in primate visual cortex, andcomputer-aided reconstruction of topographic and columnar maps in primates.The system-level chaptersfocus on the oculomotor system VLSI models of early vision, schemas for high-level vision,goal-directed movements, modular learning, effects of applied electric current fields on corticalneural activity neuropsychological studies of brain and mind, and an information-theoretic view ofanalog representation in striate cortex.Eric L. Schwartz is Professor of Brain Research and ResearchProfessor of Computer Science, Courant Institute of Mathematical Sciences, New York UniversityMedical Center. Computational Neuroscience is included in the System Development FoundationBenchmark Series.
Download or read book Computational Neuroscience Cortical Dynamics written by Peter Erdi and published by Springer. This book was released on 2004-12-27 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents thoroughly revised tutorial papers based on lectures given by leading researchers at the 8th International Summer School on Neural Networks in Erice, Italy, in October/November 2003. The eight tutorial papers presented provide competent coverage of the field of cortical dynamics, consolidating recent theoretical and experimental results on the processing, transmission, and imprinting of information in the brain as well as on important functions of the cortical area, such as cortical rhythms, cortical neural plasticity, and their structural basis and functional significance. The book is divided in two topical sections on fundamentals of cortical dynamics and mathematical models of cortical dynamics.
Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Download or read book Principles of Brain Dynamics written by Mikhail I. Rabinovich and published by MIT Press. This book was released on 2023-12-05 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental and theoretical approaches to global brain dynamics that draw on the latest research in the field. The consideration of time or dynamics is fundamental for all aspects of mental activity—perception, cognition, and emotion—because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field. It includes contributions from both theoreticians and experimentalists, offering an eclectic treatment of fundamental issues. Topics addressed range from experimental and computational approaches to transient brain dynamics to the free-energy principle as a global brain theory. The book concludes with a short but rigorous guide to modern nonlinear dynamics and their application to neural dynamics.
Download or read book Metastable Dynamics of Neural Ensembles written by Emili Balaguer-Ballester and published by Frontiers Media SA. This book was released on 2018-03-19 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classical view of neural computation is that it can be characterized in terms of convergence to attractor states or sequential transitions among states in a noisy background. After over three decades, is this still a valid model of how brain dynamics implements cognition? This book provides a comprehensive collection of recent theoretical and experimental contributions addressing the question of stable versus transient neural population dynamics from complementary angles. These studies showcase recent efforts for designing a framework that encompasses the multiple facets of metastability in neural responses, one of the most exciting topics currently in systems and computational neuroscience.
Download or read book Micro Meso and Macro Dynamics of the Brain written by György Buzsáki and published by Springer. This book was released on 2016-05-02 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress and address future developments. The individual chapters cover several fascinating facets of contemporary neuroscience from elementary computation of neurons, mesoscopic network oscillations, internally generated assembly sequences in the service of cognition, large-scale neuronal interactions within and across systems, the impact of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-scale computation and consciousness. Each of these topics require appropriate levels of analyses with sufficiently high temporal and spatial resolution of neuronal activity in both local and global networks, supplemented by models and theories to explain how different levels of brain dynamics interact with each other and how the failure of such interactions results in neurologic and mental disease. While such complex questions cannot be answered exhaustively by a dozen or so chapters, this volume offers a nice synthesis of current thinking and work-in-progress on micro-, meso- and macro- dynamics of the brain.
Download or read book The Neocortex written by Wolf Singer and published by MIT Press. This book was released on 2019-10-29 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experts review the latest research on the neocortex and consider potential directions for future research. Over the past decade, technological advances have dramatically increased information on the structural and functional organization of the brain, especially the cerebral cortex. This explosion of data has radically expanded our ability to characterize neural circuits and intervene at increasingly higher resolutions, but it is unclear how this has informed our understanding of underlying mechanisms and processes. In search of a conceptual framework to guide future research, leading researchers address in this volume the evolution and ontogenetic development of cortical structures, the cortical connectome, and functional properties of neuronal circuits and populations. They explore what constitutes “uniquely human” mental capacities and whether neural solutions and computations can be shared across species or repurposed for potentially uniquely human capacities. Contributors Danielle S. Bassett, Randy M. Bruno, Elizabeth A. Buffalo, Michael E. Coulter, Hermann Cuntz, Stanislas Dehaene, James J. DiCarlo, Pascal Fries, Karl J. Friston, Asif A. Ghazanfar, Anne-Lise Giraud, Joshua I. Gold, Scott T. Grafton, Jennifer M. Groh, Elizabeth A. Grove, Saskia Haegens, Kenneth D. Harris, Kristen M. Harris, Nicholas G. Hatsopoulos, Tarik F. Haydar, Takao K. Hensch, Wieland B. Huttner, Matthias Kaschube, Gilles Laurent, David A. Leopold, Johannes Leugering, Belen Lorente-Galdos, Jason N. MacLean, David A. McCormick, Lucia Melloni, Anish Mitra, Zoltán Molnár, Sydney K. Muchnik, Pascal Nieters, Marcel Oberlaender, Bijan Pesaran, Christopher I. Petkov, Gordon Pipa, David Poeppel, Marcus E. Raichle, Pasko Rakic, John H. Reynolds, Ryan V. Raut, John L. Rubenstein, Andrew B. Schwartz, Terrence J. Sejnowski, Nenad Sestan, Debra L. Silver, Wolf Singer, Peter L. Strick, Michael P. Stryker, Mriganka Sur, Mary Elizabeth Sutherland, Maria Antonietta Tosches, William A. Tyler, Martin Vinck, Christopher A. Walsh, Perry Zurn
Download or read book Neural Masses and Fields Modelling the Dynamics of Brain Activity written by Karl Friston and published by Frontiers Media SA. This book was released on 2015-05-25 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophysical modelling of brain activity has a long and illustrious history and has recently profited from technological advances that furnish neuroimaging data at an unprecedented spatiotemporal resolution. Neuronal modelling is a very active area of research, with applications ranging from the characterization of neurobiological and cognitive processes, to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary interactions between different and seemingly distant fields; ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions by promoting papers that contribute to a deeper understanding of neural activity as measured by fMRI or electrophysiology. In general, mean field models of neural activity can be divided into two classes: neural mass and neural field models. The main difference between these classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models, which characterize activity over time only; by assuming that all neurons in a population are located at (approximately) the same point. This Research Topic focuses on both classes of models and considers several aspects and their relative merits that: span from synapses to the whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity; evoked responses, seizures, and fitting data - to infer brain states and map physiological parameters.
Download or read book Biophysics of Computation written by Christof Koch and published by Oxford University Press. This book was released on 2004-10-28 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.
Download or read book Fundamentals of Computational Neuroscience written by Thomas Trappenberg and published by Oxford University Press. This book was released on 2010 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. Completely redesigned and revised, it introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain.
Download or read book Modeling Phase Transitions in the Brain written by D. Alistair Steyn-Ross and published by Springer Science & Business Media. This book was released on 2010-03-14 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foreword by Walter J. Freeman. The induction of unconsciousness using anesthetic agents demonstrates that the cerebral cortex can operate in two very different behavioral modes: alert and responsive vs. unaware and quiescent. But the states of wakefulness and sleep are not single-neuron properties---they emerge as bulk properties of cooperating populations of neurons, with the switchover between states being similar to the physical change of phase observed when water freezes or ice melts. Some brain-state transitions, such as sleep cycling, anesthetic induction, epileptic seizure, are obvious and detected readily with a few EEG electrodes; others, such as the emergence of gamma rhythms during cognition, or the ultra-slow BOLD rhythms of relaxed free-association, are much more subtle. The unifying theme of this book is the notion that all of these bulk changes in brain behavior can be treated as phase transitions between distinct brain states. Modeling Phase Transitions in the Brain contains chapter contributions from leading researchers who apply state-space methods, network models, and biophysically-motivated continuum approaches to investigate a range of neuroscientifically relevant problems that include analysis of nonstationary EEG time-series; network topologies that limit epileptic spreading; saddle--node bifurcations for anesthesia, sleep-cycling, and the wake--sleep switch; prediction of dynamical and noise-induced spatiotemporal instabilities underlying BOLD, alpha-, and gamma-band Hopf oscillations, gap-junction-moderated Turing structures, and Hopf-Turing interactions leading to cortical waves.
Download or read book Neural Control Engineering written by Steven J. Schiff and published by MIT Press. This book was released on 2011-11-10 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: How powerful new methods in nonlinear control engineering can be applied to neuroscience, from fundamental model formulation to advanced medical applications. Over the past sixty years, powerful methods of model-based control engineering have been responsible for such dramatic advances in engineering systems as autolanding aircraft, autonomous vehicles, and even weather forecasting. Over those same decades, our models of the nervous system have evolved from single-cell membranes to neuronal networks to large-scale models of the human brain. Yet until recently control theory was completely inapplicable to the types of nonlinear models being developed in neuroscience. The revolution in nonlinear control engineering in the late 1990s has made the intersection of control theory and neuroscience possible. In Neural Control Engineering, Steven Schiff seeks to bridge the two fields, examining the application of new methods in nonlinear control engineering to neuroscience. After presenting extensive material on formulating computational neuroscience models in a control environment—including some fundamentals of the algorithms helpful in crossing the divide from intuition to effective application—Schiff examines a range of applications, including brain-machine interfaces and neural stimulation. He reports on research that he and his colleagues have undertaken showing that nonlinear control theory methods can be applied to models of single cells, small neuronal networks, and large-scale networks in disease states of Parkinson's disease and epilepsy. With Neural Control Engineering the reader acquires a working knowledge of the fundamentals of control theory and computational neuroscience sufficient not only to understand the literature in this trandisciplinary area but also to begin working to advance the field. The book will serve as an essential guide for scientists in either biology or engineering and for physicians who wish to gain expertise in these areas.
Download or read book Computational Models of Brain and Behavior written by Ahmed A. Moustafa and published by John Wiley & Sons. This book was released on 2017-09-11 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.
Download or read book Dynamics of Visual Motion Processing written by Guillaume S. Masson and published by Springer Science & Business Media. This book was released on 2009-12-02 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motion processing is an essential piece of the complex brain machinery that allows us to reconstruct the 3D layout of objects in the environment, to break camouflage, to perform scene segmentation, to estimate the ego movement, and to control our action. Although motion perception and its neural basis have been a topic of intensive research and modeling the last two decades, recent experimental evidences have stressed the dynamical aspects of motion integration and segmentation. This book presents the most recent approaches that have changed our view of biological motion processing. These new experimental evidences call for new models emphasizing the collective dynamics of large population of neurons rather than the properties of separate individual filters. Chapters will stress how the dynamics of motion processing can be used as a general approach to understand the brain dynamics itself.
Download or read book Encyclopedia of Computational Neuroscience written by Dieter Jaeger and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Analysis of Neural Data written by Robert E. Kass and published by Springer. This book was released on 2014-07-08 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.