EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Modeling in Biological Fluid Dynamics

Download or read book Computational Modeling in Biological Fluid Dynamics written by Lisa J. Fauci and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications COMPUTATIONAL MODELING IN BIOLOGICAL FLUID DYNAMICS is based on the proceedings of a very successful workshop with the same title. The workshop was an integral part of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BIOLOGY." I would like to thank the organizing committee: Lisa J. Fauci of Tulane University and Shay Gueron of Technion - Israel Institute of Technology for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), whose financial support of the IMA made the Mathematics in Biology program possible. Willard Miller, Jr., Professor and Director Institute for Mathematics and its Applications University of Minnesota 400 Lind Hall, 207 Church St. SE Minneapolis, MN 55455-0436 612-624-6066, FAX 612-626-7370 [email protected] World Wide Web: http://www.ima.umn.edu v PREFACE A unifying theme in biological fluid dynamics is the interaction of moving, elastic boundaries with a surrounding fluid. A complex dynami cal system describes the motion of red blood cells through the circulatory system, the movement of spermatazoa in the reproductive tract, cilia of microorganisms, or a heart pumping blood. The revolution in computa tional technology has allowed tremendous progress in the study of these previously intractable fluid-structure interaction problems.

Book Computational Modeling in Biological Fluid Dynamics

Download or read book Computational Modeling in Biological Fluid Dynamics written by Lisa J. Fauci and published by Springer Science & Business Media. This book was released on 2001-04-20 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains invited and refereed papers based upon presentations given in the IMA workshop on Computational Modeling in Biological Fluid Dynamics during January of 1999, which was part of the year-long program "Mathematics in Biology." This workshop brought together biologists, zoologists, engineers, and mathematicians working on a variety of issues in biological fluid dynamics. A unifying theme in biological fluid dynamics is the interaction of elastic boundaries with a surrounding fluid. These moving boundary problems, coupled with the equations of incompressible, viscuous fluid dynamics, pose formidable challenges to the computational scientist. In this volume, a variety of computational methods are presented, both in general terms and within the context of applications including ciliary beating, blood flow, and insect flight. Our hope is that this collection will allow others to become aware of and interested in the exciting accomplishments and challenges uncovered during this workshop

Book Computational Modeling in Biological Fluid Dynamics

Download or read book Computational Modeling in Biological Fluid Dynamics written by Lisa J Fauci and published by Springer. This book was released on 2011-05-14 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains invited and refereed papers based upon presentations given in the IMA workshop on Computational Modeling in Biological Fluid Dynamics during January of 1999, which was part of the year-long program "Mathematics in Biology." This workshop brought together biologists, zoologists, engineers, and mathematicians working on a variety of issues in biological fluid dynamics. A unifying theme in biological fluid dynamics is the interaction of elastic boundaries with a surrounding fluid. These moving boundary problems, coupled with the equations of incompressible, viscuous fluid dynamics, pose formidable challenges to the computational scientist. In this volume, a variety of computational methods are presented, both in general terms and within the context of applications including ciliary beating, blood flow, and insect flight. Our hope is that this collection will allow others to become aware of and interested in the exciting accomplishments and challenges uncovered during this workshop.

Book Computational Fluid and Particle Dynamics in the Human Respiratory System

Download or read book Computational Fluid and Particle Dynamics in the Human Respiratory System written by Jiyuan Tu and published by Springer Science & Business Media. This book was released on 2012-09-18 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researchers are presented the latest biomedical research activities, and the computational visualizations will enhance their understanding of physiological functions of the respiratory system.

Book Modeling of Microscale Transport in Biological Processes

Download or read book Modeling of Microscale Transport in Biological Processes written by Sid M. Becker and published by Academic Press. This book was released on 2017-01-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.

Book Computational Modeling in Tissue Engineering

Download or read book Computational Modeling in Tissue Engineering written by Liesbet Geris and published by Springer Science & Business Media. This book was released on 2012-10-30 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.

Book Computational Fluid Dynamics

Download or read book Computational Fluid Dynamics written by Xiaofeng Liu and published by . This book was released on 2019-05-16 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction, overview, and specific examples of computational fluid dynamics and their applications in the water, wastewater, and stormwater industry.

Book Heat Transfer and Fluid Flow in Biological Processes

Download or read book Heat Transfer and Fluid Flow in Biological Processes written by Sid M. Becker and published by Academic Press. This book was released on 2014-12-31 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. - Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology - Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies - Reviews the most recent advances in modeling techniques

Book Computational Bioengineering and Bioinformatics

Download or read book Computational Bioengineering and Bioinformatics written by Nenad Filipovic and published by Springer. This book was released on 2021-03-12 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the latest and most relevant topics in the field of computational bioengineering and bioinformatics, with a particular focus on patient-specific, disease-progression modeling. It covers computational methods for cardiovascular disease prediction, with an emphasis on biomechanics, biomedical decision support systems, data mining, personalized diagnostics, bio-signal processing, protein structure prediction, biomedical image processing, analysis and visualization, and high-performance computing. It also discusses state-of-the-art tools for disease characterization, and recent advances in areas such as biomechanics, cardiovascular engineering, patient-specific modeling, population-based modeling, multiscale modeling, image processing, data mining, biomedical decision-support systems, signal processing, biomaterials and dental biomechanics, tissue and cell engineering, computational chemistry and high-performance computing. As such, it is a valuable resource for researchers, medical and bioengineering students, and medical device and software experts

Book Computational Modeling in Biomechanics

Download or read book Computational Modeling in Biomechanics written by Suvranu De and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Availability of advanced computational technology has fundamentally altered the investigative paradigm in the field of biomechanics. Armed with sophisticated computational tools, researchers are seeking answers to fundamental questions by exploring complex biomechanical phenomena at the molecular, cellular, tissue and organ levels. The computational armamentarium includes such diverse tools as the ab initio quantum mechanical and molecular dynamics methods at the atomistic scales and the finite element, boundary element, meshfree as well as immersed boundary and lattice-Boltzmann methods at the continuum scales. Multiscale methods that link various scales are also being developed. While most applications require forward analysis, e.g., finding deformations and stresses as a result of loading, others involve determination of constitutive parameters based on tissue imaging and inverse analysis. This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics including biofluids and mass transfer, cardiovascular mechanics, musculoskeletal mechanics, soft tissue mechanics, and biomolecular mechanics.

Book Fluid Dynamics  Computational Modeling and Applications

Download or read book Fluid Dynamics Computational Modeling and Applications written by L. Hector Juarez and published by BoD – Books on Demand. This book was released on 2012-02-24 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of this book covers several up-to-date topics in fluid dynamics, computational modeling and its applications, and it is intended to serve as a general reference for scientists, engineers, and graduate students. The book is comprised of 30 chapters divided into 5 parts, which include: winds, building and risk prevention; multiphase flow, structures and gases; heat transfer, combustion and energy; medical and biomechanical applications; and other important themes. This book also provides a comprehensive overview of computational fluid dynamics and applications, without excluding experimental and theoretical aspects.

Book Complex Fluids in Biological Systems

Download or read book Complex Fluids in Biological Systems written by Saverio E. Spagnolie and published by Springer. This book was released on 2014-11-27 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.

Book Computational Modeling in Biomedical Engineering and Medical Physics

Download or read book Computational Modeling in Biomedical Engineering and Medical Physics written by Alexandru Morega and published by Academic Press. This book was released on 2020-09-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies.

Book Clinical and Biomedical Engineering in the Human Nose

Download or read book Clinical and Biomedical Engineering in the Human Nose written by Kiao Inthavong and published by Springer Nature. This book was released on 2020-10-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores computational fluid dynamics in the context of the human nose, allowing readers to gain a better understanding of its anatomy and physiology and integrates recent advances in clinical rhinology, otolaryngology and respiratory physiology research. It focuses on advanced research topics, such as virtual surgery, AI-assisted clinical applications and therapy, as well as the latest computational modeling techniques, controversies, challenges and future directions in simulation using CFD software. Presenting perspectives and insights from computational experts and clinical specialists (ENT) combined with technical details of the computational modeling techniques from engineers, this unique reference book will give direction to and inspire future research in this emerging field.

Book Mathematical Models in Biology

Download or read book Mathematical Models in Biology written by Leah Edelstein-Keshet and published by SIAM. This book was released on 1988-01-01 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.

Book Biofluid Mechanics

    Book Details:
  • Author : Wei Yin
  • Publisher : Academic Press
  • Release : 2011-11-02
  • ISBN : 0123813840
  • Pages : 411 pages

Download or read book Biofluid Mechanics written by Wei Yin and published by Academic Press. This book was released on 2011-11-02 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both broad and deep in coverage, Rubenstein shows that fluid mechanics principles can be applied not only to blood circulation, but also to air flow through the lungs, joint lubrication, intraocular fluid movement and renal transport. Each section initiates discussion with governing equations, derives the state equations and then shows examples of their usage. Clinical applications, extensive worked examples, and numerous end of chapter problems clearly show the applications of fluid mechanics to biomedical engineering situations. A section on experimental techniques provides a springboard for future research efforts in the subject area. - Uses language and math that is appropriate and conducive for undergraduate learning, containing many worked examples and end of chapter problems - All engineering concepts and equations are developed within a biological context - Covers topics in the traditional biofluids curriculum, as well as addressing other systems in the body that can be described by biofluid mechanics principles, such as air flow through the lungs, joint lubrication, intraocular fluid movement, and renal transport - Clinical applications are discussed throughout the book, providing practical applications for the concepts discussed.

Book Biological Fluid Dynamics  Modeling  Computations  and Applications

Download or read book Biological Fluid Dynamics Modeling Computations and Applications written by Anita T. Layton and published by American Mathematical Soc.. This book was released on 2014-10-14 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the Proceedings of the AMS Special Session on Biological Fluid Dynamics: Modeling, Computation, and Applications, held on October 13, 2012, at Tulane University, New Orleans, Louisiana. In recent years, there has been increasing interest in the development and application of advanced computational techniques for simulating fluid motion driven by immersed flexible structures. That interest is motivated, in large part, by the multitude of applications in physiology and biology. In some biological systems, fluid motion is driven by active biological tissues, which are typically constructed of fibers that are surrounded by fluid. Not only do the fibers hold the tissues together, they also transmit forces that ultimately result in fluid motion. In other examples, the fluid may flow through conduits such as blood vessels or airways that are flexible or active. That is, those conduits may react to and affect the fluid dynamics. This volume responds to the widespread interest among mathematicians, biologists, and engineers in fluid-structure interactions problems. Included are expository and review articles in biological fluid dynamics. Applications that are considered include ciliary motion, upside-down jellyfish, biological feedback in the kidney, peristalsis and dynamic suction pumping, and platelet cohesion and adhesion.