Download or read book Computational Methods for Electromagnetic Phenomena written by Wei Cai and published by Cambridge University Press. This book was released on 2013-01-03 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind to cover a wide range of computational methods for electromagnetic phenomena, from atomistic to continuum scales, this integrated and balanced treatment of mathematical formulations, algorithms and the underlying physics enables us to engage in innovative and advanced interdisciplinary computational research.
Download or read book Computational Methods in Electromagnetic Compatibility written by Dragan Poljak and published by John Wiley & Sons. This book was released on 2018-05-10 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive overview of the recent advances in the area of computational electromagnetics Computational Method in Electromagnetic Compatibility offers a review of the most recent advances in computational electromagnetics. The authors—noted experts in the field—examine similar problems by taking different approaches related to antenna theory models and transmission line methods. They discuss various solution methods related to boundary integral equation techniques and finite difference techniques. The topics covered are related to realistic antenna systems including antennas for air traffic control or ground penetrating radar antennas; grounding systems (such as grounding systems for wind turbines); biomedical applications of electromagnetic fields (such as transcranial magnetic stimulation); and much more. The text features a number of illustrative computational examples and a reference list at the end of each chapter. The book is grounded in a rigorous theoretical approach and offers mathematical details of the formulations and solution methods. This important text: Provides a trade-off between a highly efficient transmission line approach and antenna theory models providing analysis of high frequency and transient phenomena Contains the newest information on EMC analysis and design principles Discusses electromagnetic field coupling to thin wire configurations and modeling in bioelectromagnetics Written for engineering students, senior researchers and practicing electrical engineers, Computational Method in Electromagnetic Compatibility provides a valuable resource in the design of equipment working in a common electromagnetic environment.
Download or read book Computational Electromagnetism written by Alain Bossavit and published by Academic Press. This book was released on 1998-02-04 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems.BenefitsTo the EngineerA sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software.To the Specialist in Numerical ModelingThe book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity."To the TeacherAn expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities.To the StudentSolved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.
Download or read book Computational Methods for Electromagnetic Inverse Scattering written by Xudong Chen and published by John Wiley & Sons. This book was released on 2018-07-18 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and updated overview of the theory, algorithms and applications of for electromagnetic inverse scattering problems Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems Written by a leading expert in the field
Download or read book Computational Methods in Electromagnetic Compatibility written by Dragan Poljak and published by John Wiley & Sons. This book was released on 2018-04-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive overview of the recent advances in the area of computational electromagnetics Computational Method in Electromagnetic Compatibility offers a review of the most recent advances in computational electromagnetics. The authors—noted experts in the field—examine similar problems by taking different approaches related to antenna theory models and transmission line methods. They discuss various solution methods related to boundary integral equation techniques and finite difference techniques. The topics covered are related to realistic antenna systems including antennas for air traffic control or ground penetrating radar antennas; grounding systems (such as grounding systems for wind turbines); biomedical applications of electromagnetic fields (such as transcranial magnetic stimulation); and much more. The text features a number of illustrative computational examples and a reference list at the end of each chapter. The book is grounded in a rigorous theoretical approach and offers mathematical details of the formulations and solution methods. This important text: Provides a trade-off between a highly efficient transmission line approach and antenna theory models providing analysis of high frequency and transient phenomena Contains the newest information on EMC analysis and design principles Discusses electromagnetic field coupling to thin wire configurations and modeling in bioelectromagnetics Written for engineering students, senior researchers and practicing electrical engineers, Computational Method in Electromagnetic Compatibility provides a valuable resource in the design of equipment working in a common electromagnetic environment.
Download or read book Mathematical Foundations of Computational Electromagnetism written by Franck Assous and published by Springer. This book was released on 2018-06-09 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.
Download or read book Higher Order Techniques in Computational Electromagnetics written by Roberto D. Graglia and published by IET. This book was released on 2015-11-19 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher-order Techniques in Computational Electromagnetics takes a different approach to computational electromagnetics and looks at it from the viewpoint of vector fields and vector currents. It gives a more detailed treatment of vector basis function than that currently available in other books. It also describes the approximation of vector quantities by vector basis functions, explores the error in that representation, and considers various other aspects of the vector approximation problem. This unique guide is the perfect reference guide for those who need to understand and use numerical techniques for electromagnetic fields.
Download or read book Introduction to Electromagnetic Waves with Maxwell s Equations written by Ozgur Ergul and published by John Wiley & Sons. This book was released on 2021-09-14 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover an innovative and fresh approach to teaching classical electromagnetics at a foundational level Introduction to Electromagnetic Waves with Maxwell's Equations delivers an accessible and practical approach to teaching the well-known topics all electromagnetics instructors must include in their syllabus. Based on the author's decades of experience teaching the subject, the book is carefully tuned to be relevant to an audience of engineering students who have already been exposed to the basic curricula of linear algebra and multivariate calculus. Forming the backbone of the book, Maxwell's equations are developed step-by-step in consecutive chapters, while related electromagnetic phenomena are discussed simultaneously. The author presents accompanying mathematical tools alongside the material provided in the book to assist students with retention and comprehension. The book contains over 100 solved problems and examples with stepwise solutions offered alongside them. An accompanying website provides readers with additional problems and solutions. Readers will also benefit from the inclusion of: A thorough introduction to preliminary concepts in the field, including scalar and vector fields, cartesian coordinate systems, basic vector operations, orthogonal coordinate systems, and electrostatics, magnetostatics, and electromagnetics An exploration of Gauss' Law, including integral forms, differential forms, and boundary conditions A discussion of Ampere's Law, including integral and differential forms and Stoke's Theorem An examination of Faraday's Law, including integral and differential forms and the Lorentz Force Law Perfect for third-and fourth-year undergraduate students in electrical engineering, mechanical engineering, applied maths, physics, and computer science, Introduction to Electromagnetic Waves with Maxwell's Equations will also earn a place in the libraries of graduate and postgraduate students in any STEM program with applications in electromagnetics.
Download or read book Advanced Modeling in Computational Electromagnetic Compatibility written by Dragan Poljak and published by John Wiley & Sons. This book was released on 2007-02-26 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text combines the fundamentals of electromagnetics with numerical modeling to tackle a broad range of current electromagnetic compatibility (EMC) problems, including problems with lightning, transmission lines, and grounding systems. It sets forth a solid foundation in the basics before advancing to specialized topics, and allows readers to develop their own EMC computational models for applications in both research and industry.
Download or read book Time Domain Finite Element Methods for Maxwell s Equations in Metamaterials written by Jichun Li and published by Springer Science & Business Media. This book was released on 2012-12-15 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide an up-to-date introduction to the time-domain finite element methods for Maxwell’s equations involving metamaterials. Since the first successful construction of a metamaterial with both negative permittivity and permeability in 2000, the study of metamaterials has attracted significant attention from researchers across many disciplines. Thanks to enormous efforts on the part of engineers and physicists, metamaterials present great potential applications in antenna and radar design, sub-wavelength imaging, and invisibility cloak design. Hence the efficient simulation of electromagnetic phenomena in metamaterials has become a very important issue and is the subject of this book, in which various metamaterial modeling equations are introduced and justified mathematically. The development and practical implementation of edge finite element methods for metamaterial Maxwell’s equations are the main focus of the book. The book finishes with some interesting simulations such as backward wave propagation and time-domain cloaking with metamaterials.
Download or read book Asymptotic Methods in Electromagnetics written by Daniel Bouche and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerically rigorous techniques for the computation of electromagnetic fields diffracted by an object become computationally intensive, if not impractical to handle, at high frequencies and one must resort to asymptotic methods to solve the scattering problem at short wavelengths. The asymptotic methods provide closed form expansions for the diffracted fields and are also useful for eliciting physical interpretations of the various diffraction phenomena. One of the principal objectives of this book is to discuss the different asymptotic methods in a unified manner. Although the book contains explicit formulas for computing the field diffracted by conducting or dielectric-coated objects, it also provides the mathematical foundations of the different methods and explains how they are interrelated.
Download or read book Approximate Boundary Conditions in Electromagnetics written by Thomas B. A. Senior and published by IET. This book was released on 1995 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively describes a variety of methods for the approximate simulation of material surfaces.
Download or read book Computational Methods and Experimental Measurements XVII written by G.M. Carlomagno and published by WIT Press. This book was released on 2015-05-05 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing papers presented at the seventeenth in a series of biennial meetings organised by the Wessex Institute and first held in 1984, this book includes the latest research from scientists who perform experiments, researchers who develop computer codes, and those who carry out measurements on prototypes and whose work may interact. Progress in the engineering sciences is dependent on the orderly and concurrent development of all three fields. Continuous improvement in computer efficiency, coupled with diminishing costs and rapid development of numerical procedures have generated an ever-increasing expansion of computational simulations that permeate all fields of science and technology. As these procedures continue to grow in magnitude and complexity, it is essential to be certain of their reliability, i.e. to validate their results. This can be achieved by performing dedicated and accurate experiments. At the same time, current experimental techniques have become more complex and sophisticated so that they require the exploitation of computers, both for running experiments as well as acquiring and processing the resulting data. The papers contained in the book address advances in the interaction between these three areas. They cover such topics as: Computational and Experimental Methods; Fluid Flow; Structural and Stress Analysis; Materials Characterisation; Heat Transfer and Thermal Processes; Advances in Computational Methods; Automotive Applications; Applications in Industry; Process Simulations; Environmental Modelling and Applications; Computer Modelling; Validation of Computer Modelling; Computation in Measurements; Data Processing of Experiments; Virtual Testing and Verification; Simulation and Forecasting; Measurements in Engineering.
Download or read book Electromagnetic Modeling by Finite Element Methods written by João Pedro A. Bastos and published by CRC Press. This book was released on 2003-04-01 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect
Download or read book Theory and Computation of Electromagnetic Fields written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-08-10 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
Download or read book Advanced Computational Electromagnetic Methods written by Wenhua Yu and published by Artech House. This book was released on 2015-03-01 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.
Download or read book Cosmic Plasmas and Electromagnetic Phenomena written by Athina Meli and published by MDPI. This book was released on 2019-10-25 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past few decades, plasma science has witnessed a great growth in laboratory studies, in simulations, and in space. Plasma is the most common phase of ordinary matter in the universe. It is a state in which ionized matter (even as low as 1%) becomes highly electrically conductive. As such, long-range electric and magnetic fields dominate its behavior. Cosmic plasmas are mostly associated with stars, supernovae, pulsars and neutron stars, quasars and active galaxies at the vicinities of black holes (i.e., their jets and accretion disks). Cosmic plasma phenomena can be studied with different methods, such as laboratory experiments, astrophysical observations, and theoretical/computational approaches (i.e., MHD, particle-in-cell simulations, etc.). They exhibit a multitude of complex magnetohydrodynamic behaviors, acceleration, radiation, turbulence, and various instability phenomena. This Special Issue addresses the growing need of the plasma science principles in astrophysics and presents our current understanding of the physics of astrophysical plasmas, their electromagnetic behaviors and properties (e.g., shocks, waves, turbulence, instabilities, collimation, acceleration and radiation), both microscopically and macroscopically. This Special Issue provides a series of state-of-the-art reviews from international experts in the field of cosmic plasmas and electromagnetic phenomena using theoretical approaches, astrophysical observations, laboratory experiments, and state-of-the-art simulation studies.