Download or read book Computational Medicine in Data Mining and Modeling written by Goran Rakocevic and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of a variety of contemporary statistical, mathematical and computer science techniques which are used to further the knowledge in the medical domain. The authors focus on applying data mining to the medical domain, including mining the sets of clinical data typically found in patient’s medical records, image mining, medical mining, data mining and machine learning applied to generic genomic data and more. This work also introduces modeling behavior of cancer cells, multi-scale computational models and simulations of blood flow through vessels by using patient-specific models. The authors cover different imaging techniques used to generate patient-specific models. This is used in computational fluid dynamics software to analyze fluid flow. Case studies are provided at the end of each chapter. Professionals and researchers with quantitative backgrounds will find Computational Medicine in Data Mining and Modeling useful as a reference. Advanced-level students studying computer science, mathematics, statistics and biomedicine will also find this book valuable as a reference or secondary text book.
Download or read book Introduction to Computational Health Informatics written by Arvind Kumar Bansal and published by CRC Press. This book was released on 2020-01-08 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This class-tested textbook is designed for a semester-long graduate or senior undergraduate course on Computational Health Informatics. The focus of the book is on computational techniques that are widely used in health data analysis and health informatics and it integrates computer science and clinical perspectives. This book prepares computer science students for careers in computational health informatics and medical data analysis. Features Integrates computer science and clinical perspectives Describes various statistical and artificial intelligence techniques, including machine learning techniques such as clustering of temporal data, regression analysis, neural networks, HMM, decision trees, SVM, and data mining, all of which are techniques used widely used in health-data analysis Describes computational techniques such as multidimensional and multimedia data representation and retrieval, ontology, patient-data deidentification, temporal data analysis, heterogeneous databases, medical image analysis and transmission, biosignal analysis, pervasive healthcare, automated text-analysis, health-vocabulary knowledgebases and medical information-exchange Includes bioinformatics and pharmacokinetics techniques and their applications to vaccine and drug development
Download or read book Computational Medicine written by Zlatko Trajanoski and published by Springer Science & Business Media. This book was released on 2012-09-19 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational methodologies and modeling play a growing role for investigating mechanisms, and for the diagnosis and therapy of human diseases. This progress gave rise to computational medicine, an interdisciplinary field at the interface of computer science and medicine. The main focus of computational medicine lies in the development of data analysis methods and mathematical modeling as well as computational simulation techniques specifically addressing medical problems. In this book, we present a number of computational medicine topics at several scales: from molecules to cells, organs, and organisms. At the molecular level, tools for the analysis of genome variations as well as cloud computing resources for medical genetics are reviewed. Then, an analysis of gene expression data and the application to the characterization of microbial communities are highlighted. At the protein level, two types of analyses for mass spectrometry data are reviewed: labeled quantitative proteomics and lipidomics, followed by protein sequence analysis and a 3D structure and drug design chapter. Finally, three chapters on clinical applications focus on the integration of biomolecular and clinical data for cancer research, biomarker discovery, and network-based methods for computational diagnostics.
Download or read book Biomedical Data Mining for Information Retrieval written by Sujata Dash and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.
Download or read book Computational and Statistical Methods for Analysing Big Data with Applications written by Shen Liu and published by Academic Press. This book was released on 2015-11-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Download or read book Data Mining in Clinical Medicine written by Carlos Fernández Llatas and published by Humana Press. This book was released on 2014-11-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume complies a set of Data Mining techniques and new applications in real biomedical scenarios. Chapters focus on innovative data mining techniques, biomedical datasets and streams analysis, and real applications. Written in the highly successful Methods in Molecular Biology series format, chapters are thought to show to Medical Doctors and Engineers the new trends and techniques that are being applied to Clinical Medicine with the arrival of new Information and Communication technologies Authoritative and practical, Data Mining in Clinical Medicine seeks to aid scientists with new approaches and trends in the field.
Download or read book Computational Modeling in Biomedical Engineering and Medical Physics written by Alexandru Morega and published by Academic Press. This book was released on 2020-10-02 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results
Download or read book Big Data Management and the Internet of Things for Improved Health Systems written by Mishra, Brojo Kishore and published by IGI Global. This book was released on 2018-01-19 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of the increased access to high-speed Internet and smart phones, many patients have started to use mobile applications to manage various health needs. These devices and mobile apps are now increasingly used and integrated with telemedicine and telehealth via the medical Internet of Things (IoT). Big Data Management and the Internet of Things for Improved Health Systems is a critical scholarly resource that examines the digital transformation of healthcare. Featuring coverage on a broad range of topics, such as brain computer interface, data reduction techniques, and risk factors, this book is geared towards academicians, practitioners, researchers, and students seeking research on health and well-being data.
Download or read book Computational Medicine written by Zlatko Trajanoski and published by Springer Science & Business Media. This book was released on 2012-09-18 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational methodologies and modeling play a growing role for investigating mechanisms, and for the diagnosis and therapy of human diseases. This progress gave rise to computational medicine, an interdisciplinary field at the interface of computer science and medicine. The main focus of computational medicine lies in the development of data analysis methods and mathematical modeling as well as computational simulation techniques specifically addressing medical problems. In this book, we present a number of computational medicine topics at several scales: from molecules to cells, organs, and organisms. At the molecular level, tools for the analysis of genome variations as well as cloud computing resources for medical genetics are reviewed. Then, an analysis of gene expression data and the application to the characterization of microbial communities are highlighted. At the protein level, two types of analyses for mass spectrometry data are reviewed: labeled quantitative proteomics and lipidomics, followed by protein sequence analysis and a 3D structure and drug design chapter. Finally, three chapters on clinical applications focus on the integration of biomolecular and clinical data for cancer research, biomarker discovery, and network-based methods for computational diagnostics.
Download or read book Methods Models and Computation for Medical Informatics written by Gangopadhyay, Aryya and published by IGI Global. This book was released on 2012-12-31 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regular developments in technology continue to influence the medical and healthcare fields as they interact with information and computer sciences by methods of acquisition and the storage and retrieval of information. Methods, Models, and Computation for Medical Informatics is a comprehensive collection of research on computational capabilities, prototypes, and algorithms, as well as application in the areas of nursing, clinical care, public health, biomedical research, and much more. This book provides a better understanding of the models and methods used in the field of medicine for researchers, practitioners, and medical professionals alike.
Download or read book Biological Data Mining written by Jake Y. Chen and published by CRC Press. This book was released on 2009-09-01 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplin
Download or read book Modern Computational Approaches to Traditional Chinese Medicine written by Zhaohui Wu and published by Elsevier. This book was released on 2012-10-22 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recognized as an essential component of Chinese culture, Traditional Chinese Medicine (TCM) is both an ancient medical system and one still used widely in China today. TCM's independently evolved knowledge system is expressed mainly in the Chinese language and the information is frequently only available through ancient classics and confidential family records, making it difficult to utilize. The major concern in TCM is how to consolidate and integrate the data, enabling efficient retrieval and discovery of novel knowledge from the dispersed data. Computational approaches such as data mining, semantic reasoning and computational intelligence have emerged as innovative approaches for the reservation and utilization of this knowledge system. Typically, this requires an inter-disciplinary approach involving Chinese culture, computer science, modern healthcare and life sciences. This book examines the computerization of TCM information and knowledge to provide intelligent resources and supporting evidences for clinical decision-making, drug discovery, and education. Recent research results from the Traditional Chinese Medicine Informatics Group of Zhejiang University are presented, gathering in one resource systematic approaches for massive data processing in TCM. These include the utilization of modern Semantic Web and data mining methods for more advanced data integration, data analysis and integrative knowledge discovery. This book will appeal to medical professionals, life sciences students, computer scientists, and those interested in integrative, complementary, and alternative medicine. - Interdisciplinary book bringing together Traditional Chinese Medicine and computer scientists - Introduces novel network technologies to Traditional Chinese Medicine informatics - Provides theory and practical examples and case studies of new techniques
Download or read book Handbook of Molecular and Cellular Methods in Biology and Medicine Second Edition written by Leland J. Cseke and published by CRC Press. This book was released on 2003-11-24 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the best-selling Handbook of Molecular and Cellular Methods in Biology and Medicine, the field of biology has experienced several milestones. Genome sequencing of higher eukaryotes has progressed at an unprecedented speed. Starting with baker's yeast (Saccharomyces cerevisiae), organisms sequenced now include human (Homo sapiens), model crucifer (Arabidopsis thaliana), and rice (Oryza sativa). The invention of DNA microarray technology and advances in bioinformatics have generated vast amounts of genomic data. Reflecting these revolutionary advances Handbook of Molecular and Cellular Methods in Biology and Medicine, Second Edition documents conventional and modern approaches to tackle scientific research in the post-genomics era. Maintaining the step-by-step format that popularized the first edition, each chapter provides the principles behind the featured method, a detailed description of each protocol, applications of the protocol to different systems, and references for further study. Handbook of Molecular and Cellular Methods in Biology and Medicine, Second Edition now includes: New protocols in all chapters, including alternative protocols In vitro transcription methods Analysis of DNA sequences New bioseparation techniques New chapters covering: mRNA differential display Inhibition of gene expression In situ hybridization (Localization of gene expression) Combinatorial techniques Computational data mining methods applied to combinatorial chemistry libraries With this book at hand, researchers, teachers, and students can understand and utilize the major techniques and methods currently employed in cellular and molecular biology.
Download or read book Computational Learning Approaches to Data Analytics in Biomedical Applications written by Khalid Al-Jabery and published by Academic Press. This book was released on 2019-11-20 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor
Download or read book Computational Biomechanics for Medicine written by Poul M.F. Nielsen and published by Springer Nature. This book was released on 2022-10-31 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents contributions from the MICCAI 2021 Computational Biomechanics for Medicine Workshop. "Computational Biomechanics for Medicine - towards translation and better patient outcomes” comprises papers accepted for the MICCAI Computational Biomechanics for Medicine Workshop held virtually in conjunction with Medical Image Computing and Computer Assisted Intervention conference 2021, based in Strasbourg. The content focuses on methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. This book details state-of-the-art progress in the above fields to researchers, students, and professionals.
Download or read book Analyzing Network Data in Biology and Medicine written by Nataša Pržulj and published by Cambridge University Press. This book was released on 2019-03-28 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces biological concepts and biotechnologies producing the data, graph and network theory, cluster analysis and machine learning, using real-world biological and medical examples.
Download or read book Machine Learning and Data Mining written by Igor Kononenko and published by Horwood Publishing. This book was released on 2007-04-30 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. Written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining, this text is suitable foradvanced undergraduates, postgraduates and tutors in a wide area of computer science and technology, as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to libraries and bookshelves of the many companies who are using the principles of data mining to effectively deliver solid business and industry solutions.