Download or read book Introduction to Transonic Aerodynamics written by Roelof Vos and published by Springer. This book was released on 2015-03-04 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, shock-boundary-layer interaction and aeroelasticity.
Download or read book Computational Fluid Dynamics written by Jiri Blazek and published by Elsevier. This book was released on 2005-12-20 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.
Download or read book Research Directions in Computational Mechanics written by National Research Council and published by National Academies Press. This book was released on 1991-02-01 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Download or read book Fluid Dynamics for the Study of Transonic Flow written by Heinrich J. Ramm and published by Oxford University Press, USA. This book was released on 1990 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book leads readers step-by-step through the complexities encountered as moving objects approach and cross the sound barrier. The problems of transonic flight were apparent with the very first experimental flights of scale-model rockets when the disastrous impact of shock waves and flow separations caused the aircraft to spin wildly out of control. Today many of these problems have been overcome, and this book offers an introduction to the transonic theory that has made possible many of these advances. The emphasis is on the most important basic approaches to the solution of transonic problems. The book also includes explanations of common pitfalls that must be avoided. An effort has been made to derive the most important equations of inviscid and viscous transonic flow in sufficient detail so that even novices may feel confident in their problem-solving ability. The use of computer approaches is reviewed, with references to the extensive literature in this area, while the critical shortcomings of an exclusive reliance on computational methods are also described. The book will be valuable to anyone who needs to acquire an understanding of transonic flow, including practicing engineers as well as students of fluid mechanics.
Download or read book Introduction to Computational Fluid Dynamics written by Anil W. Date and published by Cambridge University Press. This book was released on 2005-08-08 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Computational Fluid Dynamics is a textbook for advanced undergraduate and first year graduate students in mechanical, aerospace and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practising engineers will find this particularly useful for reference and for continuing education.
Download or read book Transonic Aerodynamics written by L. Pamela Cook and published by SIAM. This book was released on 1993-01-01 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers exciting results, perspectives, and case studies for the treatment of problems arising in transonic aerodynamics. New advances including triple deck theory, analysis of stagnation at the nose of a body, transonic choked flow, and the transonic area rule are presented. Interest in analyzing the transonic range of flight, its stability properties, and especially the question of designing reduced drag (shockless or weak shock) airfoils keeps growing. Present day commercial aircraft cruise in the transonic range. Mechanical and aeronautical engineers interested in compressible fluid flows, design of optimal wings, and an understanding of transonic flow held about wings and airfoils will find the book invaluable. This book is understandable to those with a knowledge of continuum mechanics (fluids) and asymptotic methods. It is appropriate for graduate courses in aerodynamics and mathematical methods.
Download or read book Boundary Value Problems for Transonic Flow written by Alexander G Kuz'min and published by John Wiley & Sons. This book was released on 2003-02-28 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transonic flow occurs around moving objects as they approach and cross the sound barrier. Serious problems can occur at this point, such as shock-induced flow separation which can cause the aircraft to spin out of control. Another important practical problem is the achievement of higher aerodynamic performance of aircraft at cruise conditions, which leads to considerable fuel savings. The success in application of numerical methods for simulation of transonic flow and aircraft design depends on developments in the underlying mathematical theory. This book presents a breakthrough in the solvability analysis of boundary value problems, which makes it possible to establish convergence of finite element approximations for shock-free flow and to provide a framework for putting the existing numerical methods on a more sound basis. Also, physical aspects concerned with patterns of formation and propagation of weak shock waves are analysed. This contributes to the understanding of the extreme sensitivity of transonic flow to perturbation of freestream conditions. The developed theoretical knowledge base yields promising concepts of the airfoil design and active flow control by airfoil/wing shape modifications or suction/blowing through a perforated surface. Boundary Value Problems for Transonic Flow * Focuses on Computational Fluid Dynamics. * Addresses practical problems, such as airfoil design and flow control. * Presents developments made in the last two decades. In essence this is a much needed monograph for researchers and engineers in applied mathematics and numerical analysis applied to aerodynamics and for algorithm developers in Computational Fluid Dynamics in the aircraft industry. It gives design engineers the underlying mathematical theory necessary for developing new concepts for airfoil/wing design and flow control.
Download or read book Computational Aerodynamics written by Antony Jameson and published by Cambridge University Press. This book was released on 2022-09 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the design and analysis of numerical algorithms for aerodynamics. Ideal for graduates, researchers, and professionals in the field.
Download or read book Computational Methods for Turbulent Transonic and Viscous Flows written by J.-A. Essers and published by Springer. This book was released on 1983 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Aerodynamics and Fluid Dynamics written by Jean-Jacques Chattot and published by Springer Science & Business Media. This book was released on 2004-02-19 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives the reader the basis for understanding the way numerical schemes achieve accurate and stable simulations of physical phenomena. It is based on the finite-difference method and simple problems that allow also the analytic solutions to be worked out. ODEs as well as hyperbolic, parabolic and elliptic types are treated. The book builds on simple model equations and, pedagogically, on a host of problems given together with their solutions.
Download or read book Characteristics Finite Element Methods in Computational Fluid Dynamics written by Joe Iannelli and published by Springer Science & Business Media. This book was released on 2006-09-24 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.
Download or read book Advanced Computational Fluid and Aerodynamics written by Paul G. Tucker and published by Cambridge University Press. This book was released on 2016-03-15 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book outlines the computational fluid dynamics evolution and gives an overview of the methods available to the engineer.
Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.
Download or read book Frontiers Of Computational Fluid Dynamics 1998 written by David A Caughey and published by World Scientific. This book was released on 1998-11-20 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of Frontiers of Computational Fluid Dynamics was published in 1994 and was dedicated to Prof Antony Jameson. The present volume is dedicated to Prof Earll Murman in appreciation of his original contributions to this field.The book covers the following topics:Transonic and Hypersonic AerodynamicsAlgorithm Developments and Computational TechniquesImpact of High Performance ComputingApplications in Aeronautics and BeyondIndustrial PerspectivesEngineering EducationThe book contains 25 chapters written by leading researchers from academia, government laboratories, and industry.
Download or read book Computational Fluid Dynamics 2006 written by Herman Deconinck and published by Springer Science & Business Media. This book was released on 2009-08-04 with total page 901 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference on Computational Fluid Dynamics (ICCFD) is the merger of the International Conference on Numerical Methods in Fluid Dynamics, ICNMFD (since 1969) and International Symposium on Computational Fluid Dynamics, ISCFD (since 1985). It is held every two years and brings together physicists, mathematicians and engineers to review and share recent advances in mathematical and computational techniques for modeling fluid dynamics. The proceedings of the 2006 conference (ICCFD4) held in Gent, Belgium, contain a selection of refereed contributions and are meant to serve as a source of reference for all those interested in the state of the art in computational fluid mechanics.
Download or read book Computational Methods for Fluid Flow written by Roger Peyret and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: In developing this book, we decided to emphasize applications and to provide methods for solving problems. As a result, we limited the mathematical devel opments and we tried as far as possible to get insight into the behavior of numerical methods by considering simple mathematical models. The text contains three sections. The first is intended to give the fundamen tals of most types of numerical approaches employed to solve fluid-mechanics problems. The topics of finite differences, finite elements, and spectral meth ods are included, as well as a number of special techniques. The second section is devoted to the solution of incompressible flows by the various numerical approaches. We have included solutions of laminar and turbulent-flow prob lems using finite difference, finite element, and spectral methods. The third section of the book is concerned with compressible flows. We divided this last section into inviscid and viscous flows and attempted to outline the methods for each area and give examples.
Download or read book Frontiers of Computational Fluid Dynamics 2006 written by David A. Caughey and published by World Scientific. This book was released on 2005 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series of volumes to which this book belongs honors contributors who have made a major impact in computational fluid dynamics. This fourth volume in the series is dedicated to David Caughey on the occasion of his 60th birthday. The first volume was published in 1994 and was dedicated to Prof Antony Jameson. The second, dedicated to Earl Murman, was published in 1998. The third volume was dedicated to Robert MacCormack in 2002. Written by leading researchers from academia, government laboratories, and industry, the contributions in this volume present descriptions of the latest developments in techniques for numerical analysis of fluid flow problems, as well as applications to important problems in industry.