Download or read book Competitively Inhibited Neural Networks for Adaptive Parameter Estimation written by Michael Lemmon and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is "good news" and "bad news" associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph.
Download or read book Intelligent Data Engineering and Automated Learning IDEAL 2000 Data Mining Financial Engineering and Intelligent Agents written by Kwong S. Leung and published by Springer. This book was released on 2003-07-31 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: X Table of Contents Table of Contents XI XII Table of Contents Table of Contents XIII XIV Table of Contents Table of Contents XV XVI Table of Contents K.S. Leung, L.-W. Chan, and H. Meng (Eds.): IDEAL 2000, LNCS 1983, pp. 3›8, 2000. Springer-Verlag Berlin Heidelberg 2000 4 J. Sinkkonen and S. Kaski Clustering by Similarity in an Auxiliary Space 5 6 J. Sinkkonen and S. Kaski Clustering by Similarity in an Auxiliary Space 7 0.6 1.5 0.4 1 0.2 0.5 0 0 10 100 1000 10000 10 100 1000 Mutual information (bits) Mutual information (bits) 8 J. Sinkkonen and S. Kaski 20 10 0 0.1 0.3 0.5 0.7 Mutual information (mbits) Analyses on the Generalised Lotto-Type Competitive Learning Andrew Luk St B&P Neural Investments Pty Limited, Australia Abstract, In generalised lotto-type competitive learning algorithm more than one winner exist. The winners are divided into a number of tiers (or divisions), with each tier being rewarded differently. All the losers are penalised (which can be equally or differently). In order to study the various properties of the generalised lotto-type competitive learning, a set of equations, which governs its operations, is formulated. This is then used to analyse the stability and other dynamic properties of the generalised lotto-type competitive learning.
Download or read book Handbook of Pattern Recognition Computer Vision written by Chi-hau Chen and published by World Scientific. This book was released on 1999 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation. Presents the latest research findings in theory, techniques, algorithms, and major applications of pattern recognition and computer vision, as well as new hardware and architecture aspects. Contains sections on basic methods in pattern recognition and computer vision, nine recognition applications, inspection and robotic applications, and architectures and technology. Some areas discussed include cluster analysis, 3D vision of dynamic objects, speech recognition, computer vision in food handling, and video content analysis and retrieval. This second edition is extensively revised to describe progress in the field since 1993. Chen is affiliated with the electrical and computer engineering department at the University of Massachusetts-Dartmouth. Annotation copyrighted by Book News, Inc., Portland, OR.
Download or read book Handbook of Pattern Recognition and Computer Vision written by C. H. Chen and published by World Scientific. This book was released on 1993-08 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book provides an up-to-date and authoritative treatment of pattern recognition and computer vision, with chapters written by leaders in the field. On the basic methods in pattern recognition and computer vision, topics range from statistical pattern recognition to array grammars to projective geometry to skeletonization, and shape and texture measures."--BOOK JACKET.
Download or read book Explanation Based Neural Network Learning written by Sebastian Thrun and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lifelong learning addresses situations in which a learner faces a series of different learning tasks providing the opportunity for synergy among them. Explanation-based neural network learning (EBNN) is a machine learning algorithm that transfers knowledge across multiple learning tasks. When faced with a new learning task, EBNN exploits domain knowledge accumulated in previous learning tasks to guide generalization in the new one. As a result, EBNN generalizes more accurately from less data than comparable methods. Explanation-Based Neural Network Learning: A Lifelong Learning Approach describes the basic EBNN paradigm and investigates it in the context of supervised learning, reinforcement learning, robotics, and chess. `The paradigm of lifelong learning - using earlier learned knowledge to improve subsequent learning - is a promising direction for a new generation of machine learning algorithms. Given the need for more accurate learning methods, it is difficult to imagine a future for machine learning that does not include this paradigm.' From the Foreword by Tom M. Mitchell.
Download or read book Structure Level Adaptation for Artificial Neural Networks written by Tsu-Chang Lee and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: 63 3. 2 Function Level Adaptation 64 3. 3 Parameter Level Adaptation. 67 3. 4 Structure Level Adaptation 70 3. 4. 1 Neuron Generation . 70 3. 4. 2 Neuron Annihilation 72 3. 5 Implementation . . . . . 74 3. 6 An Illustrative Example 77 3. 7 Summary . . . . . . . . 79 4 Competitive Signal Clustering Networks 93 4. 1 Introduction. . 93 4. 2 Basic Structure 94 4. 3 Function Level Adaptation 96 4. 4 Parameter Level Adaptation . 101 4. 5 Structure Level Adaptation 104 4. 5. 1 Neuron Generation Process 107 4. 5. 2 Neuron Annihilation and Coalition Process 114 4. 5. 3 Structural Relation Adjustment. 116 4. 6 Implementation . . 119 4. 7 Simulation Results 122 4. 8 Summary . . . . . 134 5 Application Example: An Adaptive Neural Network Source Coder 135 5. 1 Introduction. . . . . . . . . . 135 5. 2 Vector Quantization Problem 136 5. 3 VQ Using Neural Network Paradigms 139 Vlll 5. 3. 1 Basic Properties . 140 5. 3. 2 Fast Codebook Search Procedure 141 5. 3. 3 Path Coding Method. . . . . . . 143 5. 3. 4 Performance Comparison . . . . 144 5. 3. 5 Adaptive SPAN Coder/Decoder 147 5. 4 Summary . . . . . . . . . . . . . . . . . 152 6 Conclusions 155 6. 1 Contributions 155 6. 2 Recommendations 157 A Mathematical Background 159 A. 1 Kolmogorov's Theorem . 160 A. 2 Networks with One Hidden Layer are Sufficient 161 B Fluctuated Distortion Measure 163 B. 1 Measure Construction . 163 B. 2 The Relation Between Fluctuation and Error 166 C SPAN Convergence Theory 171 C. 1 Asymptotic Value of Wi 172 C. 2 Energy Function . .
Download or read book Recent Advances in Robot Learning written by Judy A. Franklin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).
Download or read book Rule Based Programming written by Thaddeus J. Kowalski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rule-Based Programming is a broad presentation of the rule-based programming method with many example programs showing the strengths of the rule-based approach. The rule-based approach has been used extensively in the development of artificial intelligence systems, such as expert systems and machine learning. This rule-based programming technique has been applied in such diverse fields as medical diagnostic systems, insurance and banking systems, as well as automated design and configuration systems. Rule-based programming is also helpful in bridging the semantic gap between an application and a program, allowing domain specialists to understand programs and participate more closely in their development. Over sixty programs are presented and all programs are available from an ftp site. Many of these programs are presented in several versions allowing the reader to see how realistic programs are elaborated from `back of envelope' models. Metaprogramming is also presented as a technique for bridging the `semantic gap'. Rule-Based Programming will be of interest to programmers, systems analysts and other developers of expert systems as well as to researchers and practitioners in artificial intelligence, computer science professionals and educators.
Download or read book Multistrategy Learning written by Ryszard S. Michalski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. Multistrategy Learning contains contributions characteristic of the current research in this area.
Download or read book Investigating Explanation Based Learning written by Gerald DeJong and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explanation-Based Learning (EBL) can generally be viewed as substituting background knowledge for the large training set of exemplars needed by conventional or empirical machine learning systems. The background knowledge is used automatically to construct an explanation of a few training exemplars. The learned concept is generalized directly from this explanation. The first EBL systems of the modern era were Mitchell's LEX2, Silver's LP, and De Jong's KIDNAP natural language system. Two of these systems, Mitchell's and De Jong's, have led to extensive follow-up research in EBL. This book outlines the significant steps in EBL research of the Illinois group under De Jong. This volume describes theoretical research and computer systems that use a broad range of formalisms: schemas, production systems, qualitative reasoning models, non-monotonic logic, situation calculus, and some home-grown ad hoc representations. This has been done consciously to avoid sacrificing the ultimate research significance in favor of the expediency of any particular formalism. The ultimate goal, of course, is to adopt (or devise) the right formalism.
Download or read book Robot Learning written by J. H. Connell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building a robot that learns to perform a task has been acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots would relieve humans from much of the drudgery of programming and would potentially allow operation in environments that were changeable or only partially known. Progress towards this goal would also make fundamental contributions to artificial intelligence by furthering our understanding of how to successfully integrate disparate abilities such as perception, planning, learning and action. Although its roots can be traced back to the late fifties, the area of robot learning has lately seen a resurgence of interest. The flurry of interest in robot learning has partly been fueled by exciting new work in the areas of reinforcement earning, behavior-based architectures, genetic algorithms, neural networks and the study of artificial life. Robot Learning gives an overview of some of the current research projects in robot learning being carried out at leading universities and research laboratories in the United States. The main research directions in robot learning covered in this book include: reinforcement learning, behavior-based architectures, neural networks, map learning, action models, navigation and guided exploration.
Download or read book Reinforcement Learning written by Richard S. Sutton and published by Springer Science & Business Media. This book was released on 1992-05-31 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning is the learning of a mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take, as in most forms of machine learning, but instead must discover which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions may affect not only the immediate reward, but also the next situation, and through that all subsequent rewards. These two characteristics -- trial-and-error search and delayed reward -- are the most important distinguishing features of reinforcement learning. Reinforcement learning is both a new and a very old topic in AI. The term appears to have been coined by Minsk (1961), and independently in control theory by Walz and Fu (1965). The earliest machine learning research now viewed as directly relevant was Samuel's (1959) checker player, which used temporal-difference learning to manage delayed reward much as it is used today. Of course learning and reinforcement have been studied in psychology for almost a century, and that work has had a very strong impact on the AI/engineering work. One could in fact consider all of reinforcement learning to be simply the reverse engineering of certain psychological learning processes (e.g. operant conditioning and secondary reinforcement). Reinforcement Learning is an edited volume of original research, comprising seven invited contributions by leading researchers.
Download or read book Connectionist Approaches to Language Learning written by David Touretzky and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: arise automatically as a result of the recursive structure of the task and the continuous nature of the SRN's state space. Elman also introduces a new graphical technique for study ing network behavior based on principal components analysis. He shows that sentences with multiple levels of embedding produce state space trajectories with an intriguing self similar structure. The development and shape of a recurrent network's state space is the subject of Pollack's paper, the most provocative in this collection. Pollack looks more closely at a connectionist network as a continuous dynamical system. He describes a new type of machine learning phenomenon: induction by phase transition. He then shows that under certain conditions, the state space created by these machines can have a fractal or chaotic structure, with a potentially infinite number of states. This is graphically illustrated using a higher-order recurrent network trained to recognize various regular languages over binary strings. Finally, Pollack suggests that it might be possible to exploit the fractal dynamics of these systems to achieve a generative capacity beyond that of finite-state machines.
Download or read book An Introduction to Fuzzy Logic Applications in Intelligent Systems written by Ronald R. Yager and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Fuzzy Logic Applications in Intelligent Systems consists of a collection of chapters written by leading experts in the field of fuzzy sets. Each chapter addresses an area where fuzzy sets have been applied to situations broadly related to intelligent systems. The volume provides an introduction to and an overview of recent applications of fuzzy sets to various areas of intelligent systems. Its purpose is to provide information and easy access for people new to the field. The book also serves as an excellent reference for researchers in the field and those working in the specifics of systems development. People in computer science, especially those in artificial intelligence, knowledge-based systems, and intelligent systems will find this to be a valuable sourcebook. Engineers, particularly control engineers, will also have a strong interest in this book. Finally, the book will be of interest to researchers working in decision support systems, operations research, decision theory, management science and applied mathematics. An Introduction to Fuzzy Logic Applications in Intelligent Systems may also be used as an introductory text and, as such, it is tutorial in nature.
Download or read book Generating Abstraction Hierarchies written by Craig A. Knoblock and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generating Abstraction Hierarchies presents a completely automated approach to generating abstractions for problem solving. The abstractions are generated using a tractable, domain-independent algorithm whose only inputs are the definition of a problem space and the problem to be solved and whose output is an abstraction hierarchy that is tailored to the particular problem. The algorithm generates abstraction hierarchies that satisfy the `ordered monotonicity' property, which guarantees that the structure of an abstract solution is not changed in the process of refining it. An abstraction hierarchy with this property allows a problem to be decomposed such that the solution in an abstract space can be held invariant while the remaining parts of a problem are solved. The algorithm for generating abstractions is implemented in a system called ALPINE, which generates abstractions for a hierarchical version of the PRODIGY problem solver. Generating Abstraction Hierarchies formally defines this hierarchical problem solving method, shows that under certain assumptions this method can reduce the size of a search space from exponential to linear in the solution size, and describes the implementation of this method in PRODIGY. The abstractions generated by ALPINE are tested in multiple domains on large problem sets and are shown to produce shorter solutions with significantly less search than problem solving without using abstraction. Generating Abstraction Hierarchies will be of interest to researchers in machine learning, planning and problem reformation.
Download or read book TENCON 93 written by and published by . This book was released on 1993 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Intelligent Data Engineering and Automated Learning written by and published by . This book was released on 2000 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: