EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Comparing FRACHEM and TOUGHREACT for Reactive Transport Modelingof Brine rock Interactions in Enhanced Geothermal Systems  EGS

Download or read book Comparing FRACHEM and TOUGHREACT for Reactive Transport Modelingof Brine rock Interactions in Enhanced Geothermal Systems EGS written by K. Pruess and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Coupled modelling of fluid flow and reactive transport ingeothermal systems is challenging because of reservoir conditions such ashigh temperatures, elevated pressures and sometimes high salinities ofthe formation fluids. Thermal hydrological-chemical (THC) codes, such asFRACHEM and TOUGHREACT, have been developed to evaluate the long-termhydrothermal and chemical evolution of exploited reservoirs. In thisstudy, the two codes were applied to model the same geothermal reservoir, to forecast reservoir evolution using respective thermodynamic andkinetic input data. A recent (unreleased) TOUGHREACT version allows theuse of either an extended Debye-Hu?ckel or Pitzer activity model forcalculating activity coefficients, while FRACHEM was designed to use thePitzer formalism. Comparison of models results indicate that differencesin thermodynamic equilibrium constants, activity coefficients andkinetics models can result in significant differences in predictedmineral precipitation behaviour and reservoir-porosity evolution. Differences in the calculation schemes typically produce less differencein model outputs than differences in input thermodynamic and kineticdata, with model results being particularly sensitive to differences inion-interaction parameters for highsalinity systems.

Book Geochemical Modeling of Groundwater  Vadose and Geothermal Systems

Download or read book Geochemical Modeling of Groundwater Vadose and Geothermal Systems written by Jochen Bundschuh and published by CRC Press. This book was released on 2011-12-23 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geochemical modeling is an important tool in environmental studies, and in the areas of subsurface and surface hydrology, pedology, water resources management, mining geology, geothermal resources, hydrocarbon geology, and related areas dealing with the exploration and extraction of natural resources. The book fills a gap in the literature through its discussion of geochemical modeling, which simulates the chemical and physical processes affecting the distribution of chemical species in liquid, gas, and solid phases. Geochemical modeling applies to a diversity of subsurface environments, from the vadose zone close to the Earth’s surface, down to deep-seated geothermal reservoirs. This book provides the fundamental thermodynamic concepts of liquid-gas-solid phase systems. It introduces the principal types of geochemical models, such as speciation, reaction-path or forward, inverse- and reactive-transport models, together with examples of the most common codes and the best-practices for constructing geochemical models. The physical laws describing homogeneous and heterogeneous chemical reactions, their kinetics, and the transport of reactive solutes are presented. The partial differential or algebraic equations representing these laws, and the principal numerical methods that allow approximate solutions of these equations that can provide useful solutions to model different geochemical processes, are discussed in detail. Case studies applying geochemical models in different scientific areas and environmental settings, conclude the book. The book is addressed to students, teachers, other professionals, and to the institutions involved in water, geothermal and hydrocarbon resources, mining, and environmental management. The book should prove useful to undergraduate and graduate students, postgraduates, professional geologists and geophysicists, engineers, environmental scientists, soil scientists, hydrochemists, and others interested in water and geochemistry.

Book Modeling Brine rock Interactions in an Enhanced Geothermal Systemdeep Fractured Reservoir at Soultz Sous Forets  France

Download or read book Modeling Brine rock Interactions in an Enhanced Geothermal Systemdeep Fractured Reservoir at Soultz Sous Forets France written by Karsten Pruess and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The modeling of coupled thermal, hydrological, and chemical (THC) processes in geothermal systems is complicated by reservoir conditions such as high temperatures, elevated pressures and sometimes the high salinity of the formation fluid. Coupled THC models have been developed and applied to the study of enhanced geothermal systems (EGS) to forecast the long-term evolution of reservoir properties and to determine how fluid circulation within a fractured reservoir can modify its rock properties. In this study, two simulators, FRACHEM and TOUGHREACT, specifically developed to investigate EGS, were applied to model the same geothermal reservoir and to forecast reservoir evolution using their respective thermodynamic and kinetic input data. First, we report the specifics of each of these two codes regarding the calculation of activity coefficients, equilibrium constants and mineral reaction rates. Comparisons of simulation results are then made for a Soultz-type geothermal fluid (ionic strength {approx}1.8 molal), with a recent (unreleased) version of TOUGHREACT using either an extended Debye-Hueckel or Pitzer model for calculating activity coefficients, and FRACHEM using the Pitzer model as well. Despite somewhat different calculation approaches and methodologies, we observe a reasonably good agreement for most of the investigated factors. Differences in the calculation schemes typically produce less difference in model outputs than differences in input thermodynamic and kinetic data, with model results being particularly sensitive to differences in ion-interaction parameters for activity coefficient models. Differences in input thermodynamic equilibrium constants, activity coefficients, and kinetics data yield differences in calculated pH and in predicted mineral precipitation behavior and reservoir-porosity evolution. When numerically cooling a Soultz-type geothermal fluid from 200 C (initially equilibrated with calcite at pH 4.9) to 20 C and suppressing mineral precipitation, pH values calculated with FRACHEM and TOUGHREACT/Debye-Hueckel decrease by up to half a pH unit, whereas pH values calculated with TOUGHREACT/Pitzer increase by a similar amount. As a result of these differences, calcite solubilities computed using the Pitzer formalism (the more accurate approach) are up to about 1.5 orders of magnitude lower. Because of differences in Pitzer ion-interaction parameters, the calcite solubility computed with TOUGHREACT/Pitzer is also typically about 0.5 orders of magnitude lower than that computed with FRACHEM, with the latter expected to be most accurate. In a second part of this investigation, both models were applied to model the evolution of a Soultz-type geothermal reservoir under high pressure and temperature conditions. By specifying initial conditions reflecting a reservoir fluid saturated with respect to calcite (a reasonable assumption based on field data), we found that THC reservoir simulations with the three models yield similar results, including similar trends and amounts of reservoir porosity decrease over time, thus pointing to the importance of model conceptualization. This study also highlights the critical effect of input thermodynamic data on the results of reactive transport simulations, most particularly for systems involving brines.

Book Linking Reaction  Transport  and Hydrological Parameters Inunsaturated Fractured Rock

Download or read book Linking Reaction Transport and Hydrological Parameters Inunsaturated Fractured Rock written by Tianfu Xu and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling coupled water-gas-rock interactions in unsaturated fractured rock requires conceptual and numerical model considerations beyond those developed for saturated porous media. This paper focuses on the integration of the geological and hydrological parameters into the calculation of reactive-transport parameters and the feedback of mineral precipitation/dissolution to flow and transport. These basic relations have been implemented in the reactive transport code TOUGHREACT (Xu et al., 2003) that couples equilibrium and kinetic water-gas-rock inter-actions with multiphase flow and aqueous and gaseous species transport. Simulation results are presented illustrating the effects of water-rock interaction accompanying the heating of unsaturated heterogeneous fractured tuff. Unknowns associated with modeling water-rock interaction in fractured unsaturated systems are the area of the fracture surface that is wetted and which fractures are active components of the overall flow system. The wetted fracture area is important not only to water-rock interaction but to flow and transport between fluids flowing in fractures and the adjacent matrix. The other unknown relations are those describing permeability and capillary pressure modification during mineral precipitation and dissolution. Here we discuss solely the relations developed for fractures and the fracture-matrix interface.

Book Reactive Transport in Natural and Engineered Systems

Download or read book Reactive Transport in Natural and Engineered Systems written by Jennifer Druhan and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-03-04 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Open system behavior is predicated on a fundamental relationship between the timescale over which mass is transported and the timescale over which it is chemically transformed. This relationship describes the basis for the multidisciplinary field of reactive transport (RT). In the 20 years since publication of Review in Mineralogy and Geochemistry volume 34: Reactive Transport in Porous Media, RT principles have expanded beyond early applications largely based in contaminant hydrology to become broadly utilized throughout the Earth Sciences. RT is now employed to address a wide variety of natural and engineered systems across diverse spatial and temporal scales, in tandem with advances in computational capability, quantitative imaging and reactive interface characterization techniques. The present volume reviews the diversity of reactive transport applications developed over the past 20 years, ranging from the understanding of basic processes at the nano- to micrometer scale to the prediction of Earth global cycling processes at the watershed scale. Key areas of RT development are highlighted to continue advancing our capabilities to predict mass and energy transfer in natural and engineered systems.

Book Reactive Geochemical Transport Modeling of Concentrated AqueousSolutions

Download or read book Reactive Geochemical Transport Modeling of Concentrated AqueousSolutions written by Tianfu Xu and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this report, we present: -- The Pitzer ion-interactiontheory and models -- Input file requirements for using the TOUGHREACTPitzer ion-interaction model and associated databases -- Run-time errormessages -- Verification test cases and application examples. For themain code structure, features, overall solution methods, description ofinput/output files for parameters other than those specific to theimplemented Pitzer model, and error messages, see the TOUGHREACT User'sGuide (Xu et al., 2005). The TOUGHREACT Pitzer version runs on aDEC-alpha architecture CPU, under OSF1 V5.1, with Compaq Digital FortranCompiler. The compiler run-time libraries are required for execution aswell as compilation. The code also runs on Intel Pentium IV andhigher-version CPU-based machines with Compaq Visual Fortran Compiler orIntel Fortran Compiler (integrated with the Microsoft DevelopmentEnvironment). The minimum hardware configuration should include 1 GB RAMand 1 GB (2 GB recommended) of available disk space.

Book Fluid rock Interaction

Download or read book Fluid rock Interaction written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid-rock interactions. This framework is expanded through a discussion of specific topics that are the focus of current research, or are either incompletely understood or not fully appreciated. At this point, the focus shifts to a brief discussion of the three major approaches to modeling multi-scale porous media (1) continuum models, (2) pore scale and pore network models, and (3) hybrid or multi-continuum models. From here, the chapter proceeds to investigate some case studies which illuminate the power of modern numerical reactive transport modeling in deciphering fluid-rock interaction.

Book Fracture Propagation and Permeability Change Under Poro thermoelastic Loads   Silica Reactivity in Enhanced Geothermal Systems

Download or read book Fracture Propagation and Permeability Change Under Poro thermoelastic Loads Silica Reactivity in Enhanced Geothermal Systems written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Book The Importance of Parameter Variances  Correlations Lengths  and Cross correlations in Reactive Transport Models

Download or read book The Importance of Parameter Variances Correlations Lengths and Cross correlations in Reactive Transport Models written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A process-oriented modeling approach is implemented to examine the importance of parameter variances, correlation lengths, and especially cross-correlations in contaminant transport predictions over large scales. It is shown that the most important consideration is the correlation between flow rates and retardation processes (e.g., sorption, matrix diffusion) in the system. lf flow rates are negatively correlated with retardation factors in systems containing multiple flow pathways, then characterizing these negative correlation(s) may have more impact on reactive transport modeling than microscale information. Such negative correlations are expected in porous-media systems where permeability is negatively correlated with clay content and rock alteration (which are usually associated with increased sorption). Likewise, negative correlations are expected in fractured rocks where permeability is positively correlated with fracture apertures, which in turn are negatively correlated with sorption and matrix diffusion. Parameter variances and correlation lengths are also shown to have important effects on reactive transport predictions, but they are less important than parameter cross-correlations. Microscale information pertaining to contaminant transport has become more readily available as characterization methods and spectroscopic instrumentation have achieved lower detection limits, greater resolution, and better precision. Obtaining detailed mechanistic insights into contaminant-rock-water interactions is becoming a routine practice in characterizing reactive transport processes in groundwater systems (almost necessary for high-profile publications). Unfortunately, a quantitative link between microscale information and flow and transport parameter distributions or cross-correlations has not yet been established. One reason for this is that quantitative microscale information is difficult to obtain in complex, heterogeneous systems. So simple systems that lack the complexity and heterogeneity of real aquifer materials are often studied. Another is that instrumentation used to obtain microscale information often probes only one variable or family of variables at a time, so linkages to other variables must be inferred by indirect means from other lines of evidence. Despite these limitations, microscale information can be useful in the development and validation of reactive transport models. For example, knowledge of mineral phases that have strong affinities for contaminants can help in the development of cross-correlations between flow and sorption parameters via characterization of permeability and mineral distributions in aquifers. Likewise, microscale information on pore structures in low-permeability zones and contaminant penetration distances into these zones from higher-permeability zones (e.g., fractures) can provide valuable constraints on the representation of diffusive mass transfer processes between flowing porosity and secondary porosity. The prioritization of obtaining microscale information in any groundwater system can be informed by modeling exercises such as those conducted for this study.

Book A Comparison of Results Obtained with Two Subsurface Non isothermal Multiphase Reactive Transport Simulators  FADES CORE and TOUGHREACT

Download or read book A Comparison of Results Obtained with Two Subsurface Non isothermal Multiphase Reactive Transport Simulators FADES CORE and TOUGHREACT written by and published by . This book was released on 2001 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.

Book Experimental and Theoretical Studies of Reactive Transport Processes in Soluble Porous Rocks

Download or read book Experimental and Theoretical Studies of Reactive Transport Processes in Soluble Porous Rocks written by Wei Li (Ph.D.) and published by . This book was released on 2019 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Underground reactive transport processes involve fluid flow and reactions (dissolution, precipitation, and pressure solution) driving the evolution of the rock-fluid systems, which may result in favorable processes such as increased oil production by reservoir acid stimulation, or undesired processes such as caves and subsidence. Flow and reaction in the rock matrix often induce wormholes, which are long, finger-like channels that form due to the dissolution heterogeneity in the matrix. These wormholes become major flow pathways, which greatly increase the permeability of the rock. To study the reactive transport processes and the formation of wormholes, experimental and theoretical studies were conducted. More specifically, a new experimental setup and data analysis methods were introduced to the tube flow tests and core flood tests to experimentally study the evolution of the rock-fluid system. Theoretical studies with analytical and numerical models were used to simulate the experimental results and provide theoretical explanation for the experimental observations. Through the experimental and theoretical studies, this research improved the fundamental understanding of reactive transport processes in rock-fluid systems. This in turn provided accurate prediction of the evolution of the rock-fluid systems driven by the reactive transport processes.

Book Fluids In The Earth s Crust

Download or read book Fluids In The Earth s Crust written by W.S. Fyfe and published by Elsevier. This book was released on 2012-12-02 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluids in the Earth's Crust explores the generation and migration of fluids in the crust and their influence on the structure. This book also deals with the collection and concentration of these fluids into commercially possible reservoirs or their fossil trace formed as ore bodies. Chapter one of this book discusses fluid motion and geochemical and tectonic processes. It then defines fluid, discusses the rocks in the surface environment, and provides evidence of the changes of a rock's position and the motion of fluids. This book also explores the chemistry of natural fluids, including the composition of ocean water; pore water and deep-drill fluids; metamorphic fluids; fluid inclusions; and magmatic fluids. Volatile species in minerals, such as water, carbon and carbon dioxide, chlorine, fluorine, sulfur, oxygen, and nitrogen and other inert gases, are presented in this book. Other chapters in this book cover the solubility of minerals and physical chemistry of their solutions; the metamorphic reactions and processes; buffer systems; rock deformation; crustal conditions; dewatering of crust; and diapirism. The last part of the book discusses fluids, tectonics, and chemical transport. This book will be of great value to mining and oil geologists, as well as to pure geologists.

Book User s Guide to PHREEQC

Download or read book User s Guide to PHREEQC written by David L. Parkhurst and published by . This book was released on 1995 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Description of Input and Examples for Phreeqc Version 3

Download or read book Description of Input and Examples for Phreeqc Version 3 written by David L. Parkhurst and published by Createspace Independent Publishing Platform. This book was released on 2014-07-17 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits.

Book Reactive Transport in Porous Media

Download or read book Reactive Transport in Porous Media written by Peter C. Lichtner and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 34 of Reviews in Mineralogy focuses on methods to describe the extent and consequences of reactive flow and transport in natural subsurface systems. Since the field of reactive transport within the Earth Sciences is a highly multidisciplinary area of research, including geochemistry, geology, physics, chemistry, hydrology, and engineering, this book is an attempt to some extent bridge the gap between these different disciplines. This volume contains the contributions presented at a short course held in Golden, Colorado, October 25-27, 1996 in conjunction with the Mineralogical Society of America's (MSA) Annual Meeting with the Geological Society of America in Denver, Colorado.

Book Geochemical and Biogeochemical Reaction Modeling

Download or read book Geochemical and Biogeochemical Reaction Modeling written by Craig M. Bethke and published by Cambridge University Press. This book was released on 2010-12-09 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of reaction processes in the Earth's crust and on its surface, both in the laboratory and in the field. A clear exposition of the underlying equations and calculation techniques is balanced by a large number of fully worked examples. The book uses The Geochemist's Workbench® modeling software, developed by the author and already installed at over 1000 universities and research facilities worldwide. Since publication of the first edition, the field of reaction modeling has continued to grow and find increasingly broad application. In particular, the description of microbial activity, surface chemistry, and redox chemistry within reaction models has become broader and more rigorous. These areas are covered in detail in this new edition, which was originally published in 2007. This text is written for graduate students and academic researchers in the fields of geochemistry, environmental engineering, contaminant hydrology, geomicrobiology, and numerical modeling.

Book The Economics of Lithium

Download or read book The Economics of Lithium written by Roskill Information Services and published by . This book was released on 1999 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives details of recent developments in the production, consumption, and prices of and trade in lithium ores, concentrates, metal, alloys and chemicals.