EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimized Motion Planning

Download or read book Optimized Motion Planning written by Cherif Ahrikencheikh and published by Wiley-Interscience. This book was released on 1994-10-14 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first handbook to the practical specifics of motion planning, Optimized-Motion Planning offers design engineers methods and insights for solving real motion planning problems in a 3-dimensional space. Complete with a disk of software programs, this unique guide allows users to design, test, and implement possible solutions, useful in a host of contexts, especially tool path planning. Beginning with a brief overview of the general class of problems examined within the book as well as available solution techniques, Part 1 familiarizes the reader with the conceptual threads that underlie each approach. This early discussion also considers the specific applications of each technique as well as its computational efficiency. Part 2 illustrates basic problem-solving methodology by considering the case of a point moving between stationary polygons in a plane. This section features algorithms for data organization and storage, the concepts of passage networks and feasibility charts, as well as the path optimization algorithm. Elaborating on the problematic model described in Part 2, Part 3 develops an algorithm for optimizing the motion of a point between stationary polyhedra in a 3-dimensional space. This algorithm is first applied to the case of nonpoint objects moving between obstacles that can be stationary or moving with known patterns. It's then used in connection with the extensively investigated problem of motion planning for multilink manipulators.

Book Repetitive Motion Planning and Control of Redundant Robot Manipulators

Download or read book Repetitive Motion Planning and Control of Redundant Robot Manipulators written by Yunong Zhang and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.

Book Robot Manipulator Redundancy Resolution

Download or read book Robot Manipulator Redundancy Resolution written by Yunong Zhang and published by John Wiley & Sons. This book was released on 2017-09-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.

Book Motion Planning in Dynamic Environments

Download or read book Motion Planning in Dynamic Environments written by Kikuo Fujimura and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Science Workbench is a monograph series which will provide you with an in-depth working knowledge of current developments in computer technology. Every volume in this series will deal with a topic of importance in computer science and elaborate on how you yourself can build systems related to the main theme. You will be able to develop a variety of systems, including computer software tools, computer graphics, computer animation, database management systems, and computer-aided design and manufacturing systems. Computer Science Workbench represents an important new contribution in the field of practical computer technology. TOSIYASU L. KUNII To my parents Kenjiro and Nori Fujimura Preface Motion planning is an area in robotics that has received much attention recently. Much of the past research focuses on static environments - various methods have been developed and their characteristics have been well investigated. Although it is essential for autonomous intelligent robots to be able to navigate within dynamic worlds, the problem of motion planning in dynamic domains is relatively little understood compared with static problems.

Book Motion Planning for Humanoid Robots

Download or read book Motion Planning for Humanoid Robots written by Kensuke Harada and published by Springer Science & Business Media. This book was released on 2010-08-12 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and learning, and one for manipulating and grasping tasks. The problem of planning sequences of contacts that support acyclic motion in a highly constrained environment is addressed and a motion planner that enables a humanoid robot to push an object to a desired location on a cluttered table is described. The main areas of interest include: • whole body motion planning, • task planning, • biped gait planning, and • sensor feedback for motion planning. Torque-level control of multi-contact behavior, autonomous manipulation of moving obstacles, and movement control and planning architecture are also covered. Motion Planning for Humanoid Robots will help readers to understand the current research on humanoid motion planning. It is written for industrial engineers, advanced undergraduate and postgraduate students.

Book The Complexity of Robot Motion Planning

Download or read book The Complexity of Robot Motion Planning written by John Canny and published by MIT Press. This book was released on 1988 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.

Book On Motion Planning Using Numerical Optimal Control

Download or read book On Motion Planning Using Numerical Optimal Control written by Kristoffer Bergman and published by Linköping University Electronic Press. This book was released on 2019-05-28 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. In this thesis, the objective is not only to find feasible solutions to a motion planning problem, but solutions that also optimize some kind of performance measure. From a control perspective, the resulting problem is an instance of an optimal control problem. In this thesis, the focus is to further develop optimal control algorithms such that they be can used to obtain improved solutions to motion planning problems. This is achieved by combining ideas from automatic control, numerical optimization and robotics. First, a systematic approach for computing local solutions to motion planning problems in challenging environments is presented. The solutions are computed by combining homotopy methods and numerical optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms both a state-of-the-art numerical optimal control method based on standard initialization strategies and a state-of-the-art optimizing sampling-based planner based on random sampling. Second, a framework for automatically generating motion primitives for lattice-based motion planners is proposed. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the algorithm not only automatically optimizes the motions connecting pre-defined boundary conditions, but also simultaneously optimizes the terminal state constraints as well. In addition to handling static a priori known system parameters such as platform dimensions, the framework also allows for fast automatic re-optimization of motion primitives if the system parameters change while the system is in use. Furthermore, the proposed framework is extended to also allow for an optimization of discretization parameters, that are are used by the lattice-based motion planner to define a state-space discretization. This enables an optimized selection of these parameters for a specific system instance. Finally, a unified optimization-based path planning approach to efficiently compute locally optimal solutions to advanced path planning problems is presented. The main idea is to combine the strengths of sampling-based path planners and numerical optimal control. The lattice-based path planner is applied to the problem in a first step using a discretized search space, where system dynamics and objective function are chosen to coincide with those used in a second numerical optimal control step. This novel tight combination of a sampling-based path planner and numerical optimal control makes, in a structured way, benefit of the former method’s ability to solve combinatorial parts of the problem and the latter method’s ability to obtain locally optimal solutions not constrained to a discretized search space. The proposed approach is shown in several practically relevant path planning problems to provide improvements in terms of computation time, numerical reliability, and objective function value.

Book Practical Motion Planning in Robotics

Download or read book Practical Motion Planning in Robotics written by Kamal Gupta and published by Chichester, England ; Toronto : J. Wiley. This book was released on 1998-10-15 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Motion Planning in Robotics Current Approaches and Future Directions Edited by Kamal Gupta Simon Fraser University, Burnaby, Canada Angel P. del Pobil Jaume-l University, Castellon, Spain Designed to bridge the gap between research and industry, Practical Motion Planning in Robotics brings theoretical advances to bear on real-world applications. Capitalizing on recent progress, this comprehensive study emphasizes the practical aspects of techniques for collision detection, obstacle avoidance, path planning and manipulation planning. The broad approach spans both model- and sensor-based motion planning, collision detection and geometric complexity, and future directions. Features include: - Review of state-of-the-art techniques and coverage of the main issues to be considered in the development of motion planners for use in real applications - Focus on gross motion planning for articulated arms enabling robots to perform non-contact tasks with relatively high tolerances plus brief consideration of mobile robots - The use of efficient algorithms to tackle incremental changes in the environment - Illlustration of robot motion planning applications in virtual prototyping and the shipbuilding industry - Demonstration of efficient path planners combining both local and global planning approaches in conjunction with efficient techniques for collision detection and distance computations - International contributions from academia and industry Combining theory and practice, this timely book will appeal to academic researchers and practising engineers in the fields of robotic systems, mechatronics and computer science.

Book A Framework for a Supervisory Expert System for Robotic Manipulators with Joint Position Limits and Joint Rate Limits

Download or read book A Framework for a Supervisory Expert System for Robotic Manipulators with Joint Position Limits and Joint Rate Limits written by and published by . This book was released on 1998 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report addresses the problem of path planning and control of robotic manipulators which have joint-position limits and joint-rate limits. The manipulators move autonomously and carry out variable tasks in a dynamic, unstructured and cluttered environment. The issue considered is whether the robotic manipulator can achieve all its tasks, and if it cannot, the objective is to identify the closest achievable goal. This problem is formalized and systematically solved for generic manipulators by using inverse kinematics and forward kinematics. Inverse kinematics are employed to define the subspace, workspace and constrained workspace, which are then used to identify when a task is not achievable. The closest achievable goal is obtained by determining weights for an optimal control redistribution scheme. These weights are quantified by using forward kinematics. Conditions leading to joint rate limits are identified, in particular it is established that all generic manipulators have singularities at the boundary of their workspace, while some have loci of singularities inside their workspace. Once the manipulator singularity is identified the command redistribution scheme is used to compute the closest achievable Cartesian velocities. Two examples are used to illustrate the use of the algorithm: A three link planar manipulator and the Unimation Puma 560. Implementation of the derived algorithm is effected by using a supervisory expert system to check whether the desired goal lies in the constrained workspace and if not, to evoke the redistribution scheme which determines the constraint relaxation between end effector position and orientation, and then computes optimal gains.

Book Motion Planning for Manipulators With Many Dregrees of Freedom   The Bb Method

Download or read book Motion Planning for Manipulators With Many Dregrees of Freedom The Bb Method written by Boris Baginski and published by Ios PressInc. This book was released on 1999-01-01 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Motion Planning for Dynamic Agents

Download or read book Motion Planning for Dynamic Agents written by Zain Anwar Ali and published by BoD – Books on Demand. This book was released on 2024-01-17 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, Motion Planning for Dynamic Agents, presents a thorough overview of current advancements and provides insights into the fascinating and vital field of aeronautics. It focuses on modern research and development, with an emphasis on dynamic agents. The chapters address a wide range of complex capabilities, including formation control, guidance and navigation, control techniques, wide-space coverage for inspection and exploration, and the best pathfinding in unknown territory. This book is a valuable resource for scholars, practitioners, and amateurs alike due to the variety of perspectives that are included, which help readers gain a sophisticated understanding of the difficulties and developments in the area of study.

Book Nonholonomic Motion Planning

Download or read book Nonholonomic Motion Planning written by Zexiang Li and published by Springer Science & Business Media. This book was released on 1993 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging from the Workshop on [title], held at the 1991 IEEE International Conference on Robotics and Automation, this volume consists of contributed chapters representing new developments in the area of path planning for robotic systems that are subject to either nonholonomic constraints or non-integrable conservation laws. The contributors include robotics engineers, nonlinear control experts, differential geometers, and applied mathematicians. Could by used as a reference by researchers or as a textbook for a graduate level robotics or nonlinear control course. Annotation copyright by Book News, Inc., Portland, OR

Book Robot Motion Planning and Control

Download or read book Robot Motion Planning and Control written by Jean-Paul Laumond and published by Springer. This book was released on 1998 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Content Description #Includes bibliographical references.

Book New Motion Planning and Real Time Localization Methods Using Proximity for Autonomous Mobile Robots

Download or read book New Motion Planning and Real Time Localization Methods Using Proximity for Autonomous Mobile Robots written by Mahmoud A. Wahdan and published by . This book was released on 1996-09-01 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most difficult theoretical problems in robotics--motion planning for rigid body robots-- must be solved before a robot can perform real- world tasks such as mine searching and processing. This dissertation proposes a new motion planning algorithm for an autonomous robot, as well as the method and results of implementing this algorithm on a real vehicle. This dissertation addresses the problem of safely navigating an autonomous vehicle through free space of a two dimensional, world model with polygonal obstacles from a start configuration (position orientation) to a goal configuration using smooth motion under the structure of a layered motion planning approach. The approach proposes several new concepts, including v-edges and directed v-edges, and divides the motion planning problem of a rigid body vehicle into two subproblems: (1) finding a global path using Voronoi diagrams and for a given start and goal configurations planning an optimal global path; the planned path is a sequence of directed v-edges, (2) planning a local motion from the start configuration, using the aforementioned global path. The problem of how to design a safe and smooth path, is effectively solved by the steering function method and proximity. Another problem addressed here is how to make a smooth transition when the vehicle gets closer to an intersection of two distinct boundaries. This dissertation also presents a robust algorithm for the vehicle to continually eliminate its positional uncertainty while executing missions. This functionality is called self-localization which is an essential component of model-based navigation for indoor applications. This algorithm is based on the two-dimensional transformation group. Through this method, the robot can minimize its positional uncertainty, make safe and reliable motions, and perform useful tasks in a partially known world.

Book Hybrid Control and Motion Planning of Dynamical Legged Locomotion

Download or read book Hybrid Control and Motion Planning of Dynamical Legged Locomotion written by Nasser Sadati and published by John Wiley & Sons. This book was released on 2012-10-16 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed, state-of-the-art guide on building complex legged robots Robot control of dynamical legged locomotion has seen tremendous advances in recent decades, with hundreds of walking mechanisms being built in laboratories worldwide, helping people with disabilities and serving as replacements for humans operating in hazardous environments. This book addresses the need in the field for a comprehensive review of motion planning algorithms and hybrid control methodologies for complex legged robots. Introducing a multidisciplinary systems engineering approach for tackling many challenges posed by legged locomotion, the book provides the engineering detail readers' need to achieve dynamical legged locomotion, including hybrid models for planar and 3D legged robots, as well as hybrid control schemes for asymptotically stabilizing periodic orbits in these closed-loop systems. Researchers and practicing engineers familiar with robotics and control systems will gain a thorough understanding of: Hybrid systems and systems with impulse effects Offline and online motion planning algorithms to generate periodic walking and running motions Two-level control schemes, including within-stride feedback laws to reduce the dimension of the hybrid systems Continuous-time update laws to minimize a general cost function online Event-based update laws to asymptotically stabilize periodic orbits Complete with downloadable MATLAB code of the control algorithms and schemes used in the book, Hybrid Control and Motion Planning of Dynamical Legged Locomotion is an invaluable guide to the latest developments and future trends in dynamical legged locomotion.

Book Mobile Robots in Rough Terrain

Download or read book Mobile Robots in Rough Terrain written by Karl Iagnemma and published by Springer. This book was released on 2010-12-15 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph discusses issues related to estimation, control, and motion planning for mobile robots operating in rough terrain, with particular attention to planetary exploration rovers. Rough terrain robotics is becoming increasingly important in space exploration, and industrial applications. However, most current motion planning and control algorithms are not well suited to rough terrain mobility, since they do not consider the physical characteristics of the rover and its environment. Specific addressed topics are: wheel terrain interaction modeling, including terrain parameter estimation and wheel terrain contact angle estimation; rough terrain motion planning; articulated suspension control; and traction control. Simulation and experimental results are presented that show that the desribed algorithms lead to improved mobility for robotic systems in rough terrain.