Download or read book Nonequilibrium Dynamics of Collective Excitations in Quantum Materials written by Edoardo Baldini and published by Springer. This book was released on 2018-03-28 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.
Download or read book Functional Integrals and Collective Excitations written by Victor Nikolaevich Popov and published by Cambridge University Press. This book was released on 1987 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the theory and selected applications of one of the most important mathematical tools used in the theoretical investigation of collective excitations in statistical physics, such as occur in superfluidity, superconductivity, plasma dynamics, superradiation, and in phase transitions.
Download or read book Many Body Approach to Electronic Excitations written by Friedhelm Bechstedt and published by Springer. This book was released on 2014-12-01 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computational and experimental results. Some numerical implementations available in well-known computer codes are critically discussed. The book is divided into four parts: (i) In the first part the many-electron systems are described in the framework of the quantum-field theory. The electron spin and the spin-orbit interaction are taken into account. Sum rules are derived. (ii) The second part is mainly related to the ground state of electronic systems. The total energy is treated within the density functional theory. The most important approximations for exchange and correlation are delighted. (iii) The third part is essentially devoted to the description of charged electronic excitations such as electrons and holes. Central approximations as Hedin's GW and the T-matrix approximation are discussed.(iv) The fourth part is focused on response functions measured in optical and loss spectroscopies and neutral pair or collective excitations.
Download or read book Collective Excitations In Fermi And Bose Systems written by Carlos A Bertulani and published by World Scientific. This book was released on 1999-05-31 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collective excitations in Fermi and Bose systems are key phenomena in understanding the structure and dynamics of many-body systems with the manifestation of different statistics. This volume presents recent developments in atomic and nuclear physics which have revealed intriguing features which are under intense scrutiny by both theorists and experimentalists.
Download or read book Computational Nuclear Physics 1 written by K. Langanke and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of standard problems in theoretical nuclear-structure physics is addressed by the well-documented computer codes presented in this book. Most of these codes were available up to now only through personal contact. The subject matter ranges from microscopic models (the shell, Skyrme-Hartree-Fock, and cranked Nilsson models) through collective excitations (RPA, IBA, and geometric model) to the relativistic impulse approximation, three-body calculations, variational Monte Carlo methods, and electron scattering. The 5 1/4'' high-density floppy disk that comes with the book contains the FORTRAN codes of the problems that are tackled in each of the ten chapters. In the text, the precise theoretical foundations and motivations of each model or method are discussed together with the numerical methods employed. Instructions for the use of each code, and how to adapt them to local compilers and/or operating systems if necessary, are included.
Download or read book Collective Excitations in Solids written by Baldassare Di Bartolo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an ac count of the NATO Advanced Study Institute on "Collective Excitations in Solids," held in Erice, Italy, from June 15 to June 29, 1981. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The objective of the Institute was to formulate a unified and coherent treatment of various collective excitation processes by drawing on the current advances in various branches of the physics of the solid state. A total of 74 participants came from 54 laboratories and 20 nations (Australia, Belgium, Burma, Canada, China, France, F. R. Germany, Greece, Israel, Italy, Mexico, The Netherlands, Pakistan, Poland, Portugal, Romania, Switzerland, Turkey, The Uni ted Kingdom, and The United States). The secretaries of the course were: Joseph Danko for the scientific aspects and Nino La Francesca for the administrative aspects of the meeting. Fourty-four lectures divided in eleven series were given. Nine "long" seminars and eight "short" seminars were also presented. In addition, two round-table discussions were held.
Download or read book Giant Resonances written by M. N. Harakeh and published by Oxford Studies in Nuclear Phys. This book was released on 2001 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Giant resonances are collective excitations of the atomic nucleus, a typical quantum many-body system. The study of these fundamental modes has in many respects contributed to our understanding of the bulk behavior of the nucleus and of the dynamics of non-equilibrium excitations. Although the phenomenon of giant resonances has been known for more than 50 years, a large amount of information has been obtained in the last 10 years. This book gives an up-to-date, comprehensive account of our present knowledge of giant resonances. It presents the experimental facts and the techniques used to obtain that information, describes how these facts fit into theoretical concepts and how this allows to determine various nuclear properties which are otherwise difficult to obtain. Included as an introduction is an overview of the main facts, a short history of how the field has developed in the course of time, and a discussion of future perspectives.
Download or read book A Guide to Feynman Diagrams in the Many Body Problem written by Richard D. Mattuck and published by Courier Corporation. This book was released on 2012-08-21 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superb introduction for nonspecialists covers Feynman diagrams, quasi particles, Fermi systems at finite temperature, superconductivity, vacuum amplitude, Dyson's equation, ladder approximation, and more. "A great delight." — Physics Today. 1974 edition.
Download or read book NIST Technical Note written by and published by . This book was released on 1991 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Electronic Excitations at Metal Surfaces written by Ansgar Liebsch and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new work, the focus is on the dynamical response of metal electrons to several types of incident electromagnetic fields. The author, an eminent theorist, discusses Time-Dependent Local Density Approximation's importance in both elucidating electronic surface excitations and describing the ground state properties of electronic systems. Chapters detail theoretical formulations and computational procedures, covering such areas as single-particle and collective modes, spatial distribution of the induced surface charges, and local electric fields. Excitation spectra are shown for a variety of clean simple metals, noble metals, chemisorbed overlayers, charged surfaces, and small metal particles.
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1976 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Adventures in Chemical Physics written by R. Stephen Berry and published by John Wiley & Sons. This book was released on 2005-11-28 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adventures in Chemical Physics continues to report recent advances with significant, up-to-date chapters by internationally recognized researchers from a variety of prestigious academic and professional institutions such as McGill University, the University of Pennsylvania, the Lawrence Berkeley National Laboratory, Tel Aviv University, and the University of Chicago.
Download or read book Nuclear Shapes and Nuclear Structure at Low Excitation Energies written by Michel Vergnes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of a NATO ARW held in Cargese, France, June 3-7, 1991
Download or read book Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer written by Ilia A. Solov’yov and published by Springer. This book was released on 2017-05-16 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science – ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system’s energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer’s usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).
Download or read book Excitation of Plasmons and Interband Transitions by Electrons written by Heinz Raether and published by Springer. This book was released on 2006-04-11 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book treats the physics of Electron Loss Spectroscopy (ELS) with electrons of different energies. Its emphasis is on the collective excitations or plasmons in the bulk as well as on the surface, including interaction with the interband transitions. A discussion of the experimental and theoretical aspects helps to define the current state of the art. In addition to the general physics, data on the plasmons (energy, halfwidth, dispersion) obtained by different methods of observation (transmission and reflection with fast and slow electrons) have been collected as completely as possible. Mr. R. Manzke was helpful in gathering these figures. Related topics such as coupling of plasmons with light, Cerenkov radiation and waveguides, plasmons in electron gases of one and two dimensions together with some applications (microanalysis) are briefly described to round off the representation and to demonstrate the usefulness of the plasmon concept."--Preface
Download or read book Foundations of Complex system Theories written by Sunny Y. Auyang and published by Cambridge University Press. This book was released on 1998 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyzes approaches to the study of complexity in the physical, biological, and social sciences.
Download or read book Condensazione Di Bose Einstein Nei Gas Atomici written by M. Inguscio and published by IOS Press. This book was released on 1999 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although first proposed by Einstein in 1924, Bose-Einstein condensation (BEC) in a gas was not achieved until 1995 when, using a combination of laser cooling and trapping, and magnetic trapping and evaporation, it was first observed in rubidium and then in lithium and sodium, cooled down to extremely low temperatures. This book brought together many leaders in both theory and experiment on Bose-Einstein condensation in gases. Their lectures provided a detailed coverage of the experimental techniques for the creation and study of BEC, as well as the theoretical foundation for understanding the properties of this novel system. This volume provides the first systematic review of the field and the many developments that have taken place in the past three years.