Download or read book Two Dimensional Transition Metal Dichalcogenides written by Chi Sin Tang and published by John Wiley & Sons. This book was released on 2023-11-08 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.
Download or read book Two Dimensional Transition Metal Dichalcogenides written by Alexander V. Kolobov and published by Springer. This book was released on 2016-07-26 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Download or read book Density Waves In Solids written by George Gruner and published by CRC Press. This book was released on 2018-03-08 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: ?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.
Download or read book Two Dimensional Transition Metal Dichalcogenides written by Narayanasamy Sabari Arul and published by Springer. This book was released on 2019-07-30 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.
Download or read book Nuclear Spectroscopy on Charge Density Wave Systems written by T. Butz and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), time differential perturbed angular correlations (TDPAC), and the Mössbauer effect (ME) have been applied to the study of charge density wave (CDW) systems. These hyperfine techniques provide unique tools to probe the structure and symmetry of commensurate CDWs, give a clear fingerprint of incommensurate CDWs, and are ideally suited for CDW dynamics. This book represents a new attempt in the series `Physics and Chemistry of Materials with Low-dimensional Structures' to bring together a consistent group of scientific results obtained by nuclear spectroscopy related to CDW phenomena in pseudo-one- and two-dimensional systems. The individual chapters contain: the theory of CDWs in chain-like transition metal tetrachalcogenides; NMR, NQR, TDPAC, and ME investigations of layered transition metal dichalcogenides; NMR studies of CDW-transport in chain-like NbSe3 and molybdenum bronzes; multinuclear NMR of KCP; high resolution NMR of organic conductors. This book is of interest to graduate students and all scientists who want to acquire a broader knowledge of nuclear spectroscopy techniques applied to CDW systems.
Download or read book Emergent States in Photoinduced Charge Density Wave Transitions written by Alfred Zong and published by Springer Nature. This book was released on 2021-09-17 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.
Download or read book Biological Soft Matter written by Corinne Nardin and published by John Wiley & Sons. This book was released on 2021-04-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological Soft Matter Explore a comprehensive, one-stop reference on biological soft matter written and edited by leading voices in the field Biological Soft Matter: Fundamentals, Properties and Applications delivers a unique and indispensable compilation of up-to-date knowledge and material on biological soft matter. The book presents a thorough overview about biological soft matter, beginning with different substance classes, including proteins, nucleic acids, lipids, and polysaccharides. It goes on to describe a variety of superstructures and aggregated and how they are formed by self-assembly processes like protein folding or crystallization. The distinguished editors have included materials with a special emphasis on macromolecular assembly, including how it applies to lipid membranes, and proteins fibrillization. Biological Soft Matter is a crucial resource for anyone working in the field, compiling information about all important substance classes and their respective roles in forming superstructures. The book is ideal for beginners and experts alike and makes the perfect guide for chemists, physicists, and life scientists with an interest in the area. Readers will also benefit from the inclusion of: An introduction to DNA nano-engineering and DNA-driven nanoparticle assembly Explorations of polysaccharides and glycoproteins, engineered biopolymers, and engineered hydrogels Discussions of macromolecular assemblies, including liquid membranes and small molecule inhibitors for amyloid aggregation A treatment of inorganic nanomaterials as promoters and inhibitors of amyloid fibril formation An examination of a wide variety of natural and artificial polymers Perfect for materials scientists, biochemists, polymer chemists, and protein chemists, Biological Soft Matter: Fundamentals, Properties and Applications will also earn a place in the libraries of biophysicists and physical chemists seeking a one-stop reference summarizing the rapidly evolving topic of biological soft matter.
Download or read book On the Nature of Charge Density Waves Superconductivity and Their Interplay in 1T TiSe2 written by Chuan Chen and published by Springer Nature. This book was released on 2019-09-27 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents analytical theoretical studies on the interplay between charge density waves (CDW) and superconductivity (SC) in the actively studied transition-metal dichalcogenide 1T-TiSe2. It begins by reapproaching a years-long debate over the nature of the phase transition to the commensurate CDW (CCDW) state and the role played by the intrinsic tendency towards excitonic condensation in this system. A Ginzburg-Landau phenomenological theory was subsequently developed to understand the experimentally observed transition from commensurate to incommensurate CDW (ICDW) order with doping or pressure, and the emergence of a superconducting dome that coexists with ICDW. Finally, to characterize microscopically the effects of the interplay between CDW and SC, the spectrum of CDW fluctuations beyond mean-field was studied in detail. In the aggregate, the work reported here provides an encompassing understanding of what are possibly key microscopic underpinnings of the CDW and SC physics in TiSe2.
Download or read book Non Centrosymmetric Superconductors written by Ernst Bauer and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superconductivity in materials without inversion symmetry in the respective crystal structures occurs in the presence of antisymmetric spin-orbit coupling as a consequence of an emerging electric field gradient. The superconducting condensate is then a superposition of spin-singlet and spin-triplet Cooper pairs. This scenario accounts for various experimental findings such as nodes in the superconducting gap or extremely large upper critical magnetic fields. Spin-triplet pairing can occur in non-centrosymmetric superconductors in spite of Anderson’s theorem that spin-triplet pairing requires a crystal structure that exhibits inversion symmetry. This book, authored and edited by leading researchers in the field, is both an introduction to and overview on this exciting branch of novel superconductors. Its self-contained and tutorial style makes it particularly suitable for self-study and as source of teaching material for special seminars and courses. At the same time it constitutes an up-to-date and authoritative reference for anyone working in this exciting field.
Download or read book 2D Monoelemental Materials Xenes and Related Technologies written by Zongyu Huang and published by CRC Press. This book was released on 2022-04-19 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Download or read book Spintronic 2D Materials written by Wenqing Liu and published by Elsevier. This book was released on 2019-12-04 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book.
Download or read book Quantum Theory of Solids written by R. E. Peierls and published by Clarendon Press. This book was released on 1996-08-15 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the subject from the basic principles of quantum mechanics. The emphasis is on a single statement of the ideas underlying the various approximations that have to be used and care is taken to separate sound arguments from conjecture. This book is written for the student of theoretical physics who wants to work in the field of solids and for the experimenter with a knowledge of quantum theory who is not content to take other people's arguments for granted. The treatment covers the electron theory of metals as well as the dynamics of crystals, including the author's work on the thermal conductivity of crystals which has been previously published in English.
Download or read book Applied Superconductivity written by Paul Seidel and published by John Wiley & Sons. This book was released on 2015-03-23 with total page 1334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the details of many applications, is an essential reference for physicists and engineers in academic research as well as in industry. Readers looking for a comprehensive overview on basic effects related to superconductivity and superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors with respect to their application. Technology, preparation and characterization are covered for bulk, single crystals, thins fi lms as well as electronic devices, wires and tapes. The main benefit of this work lies in its broad coverage of significant applications in magnets, power engineering, electronics, sensors and quantum metrology. The reader will find information on superconducting magnets for diverse applications like particle physics, fusion research, medicine, and biomagnetism as well as materials processing. SQUIDs and their usage in medicine or geophysics are thoroughly covered, as are superconducting radiation and particle detectors, aspects on superconductor digital electronics, leading readers to quantum computing and new devices.
Download or read book Proceedings of the International Conference on Atomic Molecular Optical Nano Physics with Applications written by Vinod Singh and published by Springer Nature. This book was released on 2022-03-14 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the proceedings of the International Conference on Atomic, Molecular, Optical and Nano-Physics with Applications (CAMNP 2019), organized by the Department of Applied Physics, Delhi Technological University, New Delhi, India. It presents experimental and theoretical studies of atoms, ions, molecules and nanostructures both at the fundamental level and on the application side using advanced technology. It highlights how modern tools of high-field and ultra-fast physics are no longer merely used to observe nature but can be used to reshape and redirect atoms, molecules, particles or radiation. It brings together leading researchers and professionals on the field to present and discuss the latest finding in the following areas, but not limited to: Atomic and Molecular Structure, Collision Processes, Data Production and Applications Spectroscopy of Solar and Stellar Plasma Intense Field, Short Pulse Laser and Atto-Second Physics Laser Technology, Quantum Optics and applications Bose Einstein condensation Nanomaterials and Nanoscience Nanobiotechnolgy and Nanophotonics Nano and Micro-Electronics Computational Condensed Matter Physics
Download or read book TMS 2022 151st Annual Meeting Exhibition Supplemental Proceedings written by The Minerals, Metals & Materials Society and published by Springer Nature. This book was released on 2022-03-11 with total page 1597 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection presents papers from the 151st Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.
Download or read book 2D Semiconductor Materials and Devices written by Dongzhi Chi and published by Elsevier. This book was released on 2019-10-19 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Semiconductor Materials and Devices reviews the basic science and state-of-art technology of 2D semiconductor materials and devices. Chapters discuss the basic structure and properties of 2D semiconductor materials, including both elemental (silicene, phosphorene) and compound semiconductors (transition metal dichalcogenide), the current growth and characterization methods of these 2D materials, state-of-the-art devices, and current and potential applications. - Reviews a broad range of emerging 2D electronic materials beyond graphene, including silicene, phosphorene and compound semiconductors - Provides an in-depth review of material properties, growth and characterization aspects—topics that could enable applications - Features contributions from the leading experts in the field
Download or read book MoS2 written by Zhiming M. Wang and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the structure and electronic, magnetic, and other properties of various MoS2 (Molybdenum disulfide) nanostructures, with coverage of synthesis, Valley polarization, spin physics, and other topics. MoS2 is an important, graphene-like layered nano-material that substantially extends the range of possible nanostructures and devices for nanofabrication. These materials have been widely researched in recent years, and have become an attractive topic for applications such as catalytic materials and devices based on field-effect transistors (FETs) and semiconductors. Chapters from leading scientists worldwide create a bridge between MoS2 nanomaterials and fundamental physics in order to stimulate readers' interest in the potential of these novel materials for device applications. Since MoS2 nanostructures are expected to be increasingly important for future developments in energy and other electronic device applications, this book can be recommended for Physics and Materials Science and Engineering departments and as reference for researchers in the field.