EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterization Techniques for Perovskite Solar Cell Materials

Download or read book Characterization Techniques for Perovskite Solar Cell Materials written by Meysam Pazoki and published by Elsevier. This book was released on 2019-11-14 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Characterization Techniques for Perovskite Solar Cell Materials: Characterization of Recently Emerged Perovskite Solar Cell Materials to Provide an Understanding of the Fundamental Physics on the Nano Scale and Optimize the Operation of the Device Towards Stable and Low-Cost Photovoltaic Technology explores the characterization of nanocrystals of the perovskite film, related interfaces, and the overall impacts of these properties on device efficiency. Included is a collection of both main and research techniques for perovskite solar cells. For the first time, readers will have a complete reference of different characterization techniques, all housed in a work written by highly experienced experts. Explores various characterization techniques for perovskite solar cells and discusses both their strengths and weaknesses Discusses material synthesis and device fabrication of perovskite solar cells Includes a comparison throughout the work on how to distinguish one perovskite solar cell from another

Book Advanced Characterization Techniques for Thin Film Solar Cells

Download or read book Advanced Characterization Techniques for Thin Film Solar Cells written by Daniel Abou-Ras and published by John Wiley & Sons. This book was released on 2016-10-10 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.

Book Advanced Characterization of Thin Film Solar Cells

Download or read book Advanced Characterization of Thin Film Solar Cells written by Mowafak Al-Jassim and published by Institution of Engineering and Technology. This book was released on 2020-09-17 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polycrystalline thin-film solar cells have reached a levelized cost of energy that is competitive with all other sources of electricity. The technology has significantly improved in recent years, with laboratory cell efficiencies for cadmium telluride (CdTe), perovskites, and copper indium gallium diselenide (CIGS) each exceeding 22 percent. Both CdTe and CIGS solar panels are now produced at the gigawatt scale. However, there are ongoing challenges, including the continued need to improve performance and stability while reducing cost. Advancing polycrystalline solar cell technology demands an in-depth understanding of efficiency, scaling, and degradation mechanisms, which requires sophisticated characterization methods. These methods will enable researchers and manufacturers to improve future solar modules and systems.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book High resolution Analysis of Perovskite Absorbers in Photovoltaics

Download or read book High resolution Analysis of Perovskite Absorbers in Photovoltaics written by Laura Elena Mundt and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: This thesis discusses studies performed by the author at the Fraunhofer Institute for Solar Energy Systems, ISE. The presented work focuses on the characterization of hybrid organic-inorganic halide perovskite materials used for photovoltaic application. In an in situ study of the perovskite crystal formation, multiple stages are identified. Taking advantage of a graphite-based cell structure where both contacts are in place before the perovskite crystal formation occurs within the mesoporous scaffold, the photovoltaic performance along with optoelectronic properties are monitored in real time during the crystallization. As perovskite solar cells are prone to spatial heterogeneity, spatially resolved characterization techniques mainly based on photoluminescence spectroscopy, light beam-induced current and thermography are employed to analyze non-uniform optoelectronic properties and quantify local loss mechanisms. A novel characterization method is introduced by the author, allowing for the quantitative assessment of local loss mechanisms. The technique is demonstrated on blade coated perovskite solar cells, which represent a scalable deposition route, and it highlights the detrimental impact of layer non-uniformity on the overall solar cell performance. It presents a powerful tool for the targeted improvement of layer homogeneity and consequential benefit the enhancement of the cell efficiency. In high bandgap perovskite films made from a mixed cation and halide alloy, the local optoelectronic properties are analyzed with micrometer resolution. Non-uniform emission properties are revealed and related to the layer morphology. A subcell-selective analysis of monolithic two-terminal silicon perovskite tandem solar cells is presented, accessing the individual subcells by multi-wavelength photoluminescence spectroscopy. The mapping approach additionally yields spatial distribution of the photoluminescence emission, allowing for the identification of process influences on the two subcells. The results from this thesis generated insights about the perovskite crystal formation and spatial heterogeneities on different length scales. Overall, the findings support the targeted optimization of hybrid organic-inorganic halide perovskite solar cells.

Book Materials Concepts for Solar Cells

Download or read book Materials Concepts for Solar Cells written by Thomas Dittrich and published by World Scientific Publishing Company. This book was released on 2018-01-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern challenge is for solar cell materials to enable the highest solar energy conversion efficiencies, at costs as low as possible, and at an energy balance as sustainable as necessary in the future. This textbook explains the principles, concepts and materials used in solar cells. It combines basic knowledge about solar cells and the demanded criteria for the materials with a comprehensive introduction into each of the four classes of materials for solar cells, i.e. solar cells based on crystalline silicon, epitaxial layer systems of III-V semiconductors, thin-film absorbers on foreign substrates, and nano-composite absorbers. In this sense, it bridges a gap between basic literature on the physics of solar cells and books specialized on certain types of solar cells. The last five years had several breakthroughs in photovoltaics and in the research on solar cells and solar cell materials. We consider them in this second edition. For example, the high potential of crystalline silicon with charge-selective hetero-junctions and alkaline treatments of thin-film absorbers, based on chalcopyrite, enabled new records. Research activities were boosted by the class of hybrid organic-inorganic metal halide perovskites, a promising newcomer in the field. This is essential reading for students interested in solar cells and materials for solar cells. It encourages students to solve tasks at the end of each chapter. It has been well applied for postgraduate students with background in materials science, engineering, chemistry or physics.

Book Solar Cells

Download or read book Solar Cells written by Sandeep Arya and published by Springer Nature. This book was released on 2023-12-23 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights developments in the field of solar cells. The chapters in this book address a wide range of topics including the spectrum of light received by solar cell devices, the basic functioning of a solar cell, and the evolution of solar cell technology during the last 50 years. It places particular emphasis on silicon solar cells, CIGS-based solar cells, organic solar cells, perovskite solar cells and hybrid solar cells. The book describes in detail the fabrication processes employed for different categories of solar cells. It also provides the characterization techniques utilized in this sector to evaluate the performance of solar cells and the scope of this domain in the future. Overall, it presents the essential theoretical and practical concepts of solar cells in an easy-to-understand manner.

Book Organic and Hybrid Solar Cells

Download or read book Organic and Hybrid Solar Cells written by Lukas Schmidt-Mende and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-05-24 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the increasing world-energy demand there is a growing necessity for clean and renewable energy. The sun being one of the most abundant potential sources accounts for less than 1% of the global energy supply. The market for solar cells is one of the most strongly increasing markets, even though the prize of conventional solar cells is still quite high. New emerging technologies, such as organic and hybrid solar cells have the potential to decrease the price of solar energy drastically. This book offers an introduction to these new types of solar cells and discusses fabrication, different architectures and their device physics on the bases of the author's teaching course on a master degree level. A comparison with conventional solar cells will be given and the specialties of organic solar cells emphasized.

Book Hybrid Perovskite Solar Cells

Download or read book Hybrid Perovskite Solar Cells written by Hiroyuki Fujiwara and published by John Wiley & Sons. This book was released on 2022-01-10 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unparalleled coverage of the most vibrant research field in photovoltaics! Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history. Hybrid Perovskite Solar Cells: Characteristics and Operation covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II). Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding. This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.

Book Perovskite Materials

Download or read book Perovskite Materials written by Likun Pan and published by BoD – Books on Demand. This book was released on 2016-02-03 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book summarizes the current state of the know-how in the field of perovskite materials: synthesis, characterization, properties, and applications. Most chapters include a review on the actual knowledge and cutting-edge research results. Thus, this book is an essential source of reference for scientists with research fields in energy, physics, chemistry and materials. It is also a suitable reading material for graduate students.

Book Fundamentals of Solar Cell Design

Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Book Printable Mesoscopic Perovskite Solar Cells

Download or read book Printable Mesoscopic Perovskite Solar Cells written by Hongwei Han and published by John Wiley & Sons. This book was released on 2023-06-19 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Mesoscopic Perovskite Solar Cells A comprehensive exploration of printable perovskite solar cells and their potential for commercialization In Printable Mesoscopic Perovskite Solar Cells, a team of distinguished researchers delivers an accessible and incisive discussion of the principles, technologies, and fabrication processes associated with the manufacture and use of perovskite solar cells. The authors detail the properties, characterization methods, and technologies for halide perovskite materials and devices and explain printable processing technologies, mesoscopic anode and cathodes, and spacer layers for printable perovskite solar cells. In the book, you’ll find expansive discussions of the stability issues inherent in perovskite solar cells and explore the potential for scaling and commercializing the printing of perovskite solar cells, complete with real-world industry data. Readers will also find: A thorough introduction to the background and fundamentals of perovskite solar cells Comprehensive explorations of the characterization methods and technologies used with halide perovskite materials and devices Practical discussions of printable processing technologies for perovskite solar cells Fulsome treatments of the stability issues associated with perovskite solar cells and potential solutions for them Perfect for materials scientists, solid state physicists and chemists, and electronics engineers, Printable Mesoscopic Perovskite Solar Cells will also benefit surface chemists and physicists.

Book Perovskite Materials for Energy and Environmental Applications

Download or read book Perovskite Materials for Energy and Environmental Applications written by Khursheed Ahmad and published by John Wiley & Sons. This book was released on 2022-06-15 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: PEROVSKITE MATERIALS FOR ENERGY AND ENVIRONMENTAL APPLICATIONS The book provides a state-of-the-art summary and discussion about the recent progress in the development and engineering of perovskite solar cells materials along with the future directions it might take. Among all 3rd generation solar cells, perovskite solar cells have recently been attracting much attention and have also emerged as a hot research area of competing materials for silicon PV due to their easy fabrication, long charge-carrier lifetime, low binding energy, low defect density, and low cost. This book focuses primarily on the perovskite structures and utilizes them in modern technologies of photovoltaics and environmental applications. It will be unique in terms of the use of perovskite structures in solar cell applications. This book also discusses the type of perovskites, their synthetic approach, and environmental and solar cell applications. The book also covers how perovskite solar cells originated and the recent advances in perovskite solar cells. The reader will find in this book a lucid account that: Introduces the history of perovskite materials. Explores perovskite materials for energy conversion and environmental-related applications. Covers perovskite light absorber materials for the fabrication of high-performance perovskite solar cells. Describes the device architectures and physics of perovskite solar cells. Discusses the role of perovskite absorber, electron transport, and hole transport materials layers. Audience The book is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid-state physicists, solid-state chemists, and electrical engineers.

Book Molecular Devices for Solar Energy Conversion and Storage

Download or read book Molecular Devices for Solar Energy Conversion and Storage written by Haining Tian and published by Springer. This book was released on 2017-09-14 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows the different molecular devices used for solar energy conversion and storage and the important characterization techniques for this kind of device. It has five chapters describing representative molecule-based solar cells, such as organic solar cells, dye-sensitized solar cells and hybrid solar cells (perovskite solar cell and quantum dots solar cells). It also includes two chapters demonstrating the use of molecular devices in the areas of solar fuel, water splitting and carbon dioxide reduction. There are further two chapters with interesting examples of solar energy storage related devices, like solar flow battery, solar capacitor and solar energy-thermal energy storage. Three chapters introduce important techniques used to characterize, investigate and evaluate the mechanism of molecular devices. The final chapter discusses the stability of perovskite solar cells. This book is relevant for a wide readership, and is particularly useful for students, researchers and industrial professionals who are working on molecular devices for solar energy utilization.

Book Advanced Characterization Techniques for Thin Film Solar Cells

Download or read book Advanced Characterization Techniques for Thin Film Solar Cells written by Daniel Abou-Ras and published by John Wiley & Sons. This book was released on 2016-07-13 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.

Book Perovskite Photovoltaics and Optoelectronics

Download or read book Perovskite Photovoltaics and Optoelectronics written by Tsutomu Miyasaka and published by John Wiley & Sons. This book was released on 2022-03-21 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Narottam Das and published by BoD – Books on Demand. This book was released on 2017-02-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.