Download or read book Trap Level Spectroscopy in Amorphous Semiconductors written by Victor V. Mikla and published by Elsevier. This book was released on 2010-06-11 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although amorphous semiconductors have been studied for over four decades, many of their properties are not fully understood. This book discusses not only the most common spectroscopic techniques but also describes their advantages and disadvantages. - Provides information on the most used spectroscopic techniques - Discusses the advantages and disadvantages of each technique
Download or read book Characterization of Semiconductor Heterostructures and Nanostructures written by Giovanni Agostini and published by Elsevier. This book was released on 2011-08-11 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors
Download or read book Semiconductor Material and Device Characterization written by Dieter K. Schroder and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Download or read book Characterization in Compound Semiconductor Processing written by Yale Strausser and published by Momentum Press. This book was released on 2010 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Characterization in Compound Semiconductor Processing is for scientists and engineers working with compound semiconductor materials and devices who are not characterization specialists. Materials and processes typically used in R&D and in the fabrication of GaAs, GaA1As, InP and HgCdTe based devices provide examples of common analytical problems. The book discusses a variety of characterization techniques to provide insight into how each individually, or in combination, might be used in solving problems associated with these materials. The book will help in the selection and application of the appropriate analytical techniques by its coverage of all stages of materials or device processing: substrate preparation, epitaxial growth, dielectric film deposition, contact formation and dopant introduction."--P. [4] of cover.
Download or read book The Electrical Characterization of Semiconductors written by Peter Blood and published by . This book was released on 1992 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the physical principles behind experimental techniques used for measuring the electrical properties of semiconductors. The principles involved are illustrated by reference to selected examples drawn from the world of semiconductor materials.
Download or read book Organic Semiconductors for Optoelectronics written by Hiroyoshi Naito and published by John Wiley & Sons. This book was released on 2021-08-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.
Download or read book Analytical Techniques for Semiconductor Materials and Process Characterization 6 ALTECH 2009 written by Bernd O. Kolbesen and published by The Electrochemical Society. This book was released on 2009-09 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of ALTECH 2009 address recent developments and applications of analytical techniques for semiconductor materials, processes and devices. The papers comprise techniques of elemental and structural analysis for bulk and surface impurities and defects, thin films as well as dopants in ultra-shallow junctions.
Download or read book Maxwell Displacement Current And Optical Second harmonic Generation In Organic Materials Analysis And Application For Organic Electronics written by Mitsumasa Iwamoto and published by World Scientific. This book was released on 2021-06-22 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: The probing and modeling of carrier transport in materials is a fundamental research subject in electronics and materials science. According to the Maxwell electromagnetic field theory, there are two kinds of currents, i.e., conduction current and Maxwell displacement current (MDC). The conduction current flows when electronic charges, e.g., electrons and holes, are conveyed in solids, whereas MDC is the transient current that is generated due to the change of electric flux density. The source of conductive current is charged particles, i.e., electrons, holes, ions, etc., and the source of MDC is also the charged particles. It is therefore anticipated that we can probe and model carrier transport in materials, in terms of 'MDC'. In other words, we can find a novel way for modeling and analyzing materials on the basis of Dielectric Physics Approach, on focusing dielectric polarization phenomena. Maxwell Displacement Current and Optical Second-Harmonic Generation are basically dielectric phenomena. The aim of this book is to show the dielectric physics approach for the study of molecular materials and organic electronics devices related to carrier transport and dielectric polarization, on focusing Maxwell Displacement Current and Optical Second-Harmonic Generation in Organic Materials from viewpoints of Analysis and Application for Organic Electronics.
Download or read book Basic Properties of III V Devices Understanding Mysterious Trapping Phenomena written by Kompa, Günter and published by kassel university press GmbH. This book was released on 2014 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trapping effects in III-V devices pose a great challenge to any microwave device modeler. Understanding their physical origins is of prime importance to create physics-related reliable device models. The treatment of trapping phenomena is commonly beyond the classical higher-education level of communication engineers. This book provides any basic material needed to understand trapping effects occurring primarily in GaAs and GaN power HEMT devices. As the text material covers interdisciplinary topics such as crystal defects and localized charges, trap centers and trap dynamics, deep-level transient spectroscopy, and trap centers in passivation layers, the book will be of interest to graduate students of electrical engineering, communication engineering, and physics as well as materials, device, and circuit engineers in research and industry.
Download or read book Handbook of Nanophase and Nanostructured Materials Characterization written by Zhong Lin Wang and published by 清华大学出版社有限公司. This book was released on 2003 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: 纳米相和纳米结构材料是纳米科学和纳米技术的基础。纳米相和纳米结构材料手册是一套综述纳米学科在材料合成、结构和性能表征、理论模拟、实际应用和发展前沿的书籍。本书是这套丛书的第二本。书中内容详细阐述分析表征纳米材料的方法和技术。主要围绕表征技术在分析纳米材料原子结构和物理化学性能中的原理、数据分析过程和具体应用,并介绍了各种方法的最新进展和参考文献。
Download or read book Power GaN Devices written by Matteo Meneghini and published by Springer. This book was released on 2016-09-08 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.
Download or read book Defects in Microelectronic Materials and Devices written by Daniel M. Fleetwood and published by CRC Press. This book was released on 2008-11-19 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncover the Defects that Compromise Performance and ReliabilityAs microelectronics features and devices become smaller and more complex, it is critical that engineers and technologists completely understand how components can be damaged during the increasingly complicated fabrication processes required to produce them.A comprehensive survey of defe
Download or read book Synthesis and Characterization of Semiconductor Nanomaterials written by Fanxin Wu and published by . This book was released on 2004 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dopants and Defects in Semiconductors written by Matthew D. McCluskey and published by CRC Press. This book was released on 2018-02-19 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics ... an easy reading, broad introductory overview of the field" ―Materials Today "... well written, with clear, lucid explanations ..." ―Chemistry World This revised edition provides the most complete, up-to-date coverage of the fundamental knowledge of semiconductors, including a new chapter that expands on the latest technology and applications of semiconductors. In addition to inclusion of additional chapter problems and worked examples, it provides more detail on solid-state lighting (LEDs and laser diodes). The authors have achieved a unified overview of dopants and defects, offering a solid foundation for experimental methods and the theory of defects in semiconductors. Matthew D. McCluskey is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley. Eugene E. Haller is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland.
Download or read book UV VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization written by Challa S.S.R. Kumar and published by Springer Science & Business Media. This book was released on 2013-02-19 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Second volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about UV-visible and photoluminescence spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry in the related fields.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1984 with total page 1278 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Properties of Impurity States in Superlattice Semiconductors written by C.Y. Fong and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: A NATO workshop on "The Properties of Impurity States in Semiconductor Superlattices" was held at the University of Essex, Colchester, United Kingdom, from September 7 to 11, 1987. Doped semiconductor superlattices not only provide a unique opportunity for studying low dimensional electronic behavior, they can also be custom-designed to exhibit many other fascinating el~ctronic properties. The possibility of using these materials for new and novel devices has further induced many astonishing advances, especially in recent years. The purpose of this workshop was to review both advances in the state of the art and recent results in various areas of semiconductor superlattice research, including: (i) growth and characterization techniques, (ii) deep and shallow im purity states, (iii) quantum well states, and (iv) two-dimensional conduction and other novel electronic properties. This volume consists of all the papers presented at the workshop. Chapters 1-6 are concerned with growth and characterization techniques for superlattice semiconductors. The question of a-layer is also discussed in this section. Chapters 7-15 contain a discussion of various aspects of the impurity states. Chapters 16- 22 are devoted to quantum well states. Finally, two-dimensional conduction and other electronic properties are described in chapters 23-26.