EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamentals of Silicon Carbide Technology

Download or read book Fundamentals of Silicon Carbide Technology written by Tsunenobu Kimoto and published by John Wiley & Sons. This book was released on 2014-09-23 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Book Characterization of Silicon Carbide  sic  Power Semiconductor Shottky Diodes and JFETs for High switching Frequency Applications

Download or read book Characterization of Silicon Carbide sic Power Semiconductor Shottky Diodes and JFETs for High switching Frequency Applications written by Ahmed Mohamed Abou-alfotouh and published by . This book was released on 2004 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics and Technology of Silicon Carbide Devices

Download or read book Physics and Technology of Silicon Carbide Devices written by George Gibbs and published by . This book was released on 2016-10-01 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon (Si) is by far the most widely used semiconductor material for power devices. On the other hand, Si-based power devices are approaching their material limits, which has provoked a lot of efforts to find alternatives to Si-based power devices for better performance. With the rapid innovations and developments in the semiconductor industry, Silicon Carbide (SiC) power devices have progressed from immature prototypes in laboratories to a viable alternative to Si-based power devices in high-efficiency and high-power density applications. SiC devices have numerous persuasive advantages--high-breakdown voltage, high-operating electric field, high-operating temperature, high-switching frequency and low losses. Silicon Carbide (SiC) devices belong to the so-called wide band gap semiconductor group, which offers a number of attractive characteristics for high voltage power semiconductors when compared to commonly used silicon (Si). Recently, some SiC power devices, for example, Schottky-barrier diodes (SBDs), metal-oxide-semiconductor field-effecttransistors (MOSFETs), junction FETs (JFETs), and their integrated modules have come onto the market. Physics and Technology of Silicon Carbide Devices abundantly describes recent technologies on manufacturing, processing, characterization, modeling, etc. for SiC devices.

Book High Efficiency Power Supply Using New SiC Devices

Download or read book High Efficiency Power Supply Using New SiC Devices written by Ashot Melkonyan and published by kassel university press GmbH. This book was released on 2007 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advancing Silicon Carbide Electronics Technology I

Download or read book Advancing Silicon Carbide Electronics Technology I written by Konstantinos Zekentes and published by Materials Research Forum LLC. This book was released on 2018-09-20 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapidly advancing Silicon Carbide technology has a great potential in high temperature and high frequency electronics. High thermal stability and outstanding chemical inertness make SiC an excellent material for high-power, low-loss semiconductor devices. The present volume presents the state of the art of SiC device fabrication and characterization. Topics covered include: SiC surface cleaning and etching techniques; electrical characterization methods and processing of ohmic contacts to silicon carbide; analysis of contact resistivity dependence on material properties; limitations and accuracy of contact resistivity measurements; ohmic contact fabrication and test structure design; overview of different metallization schemes and processing technologies; thermal stability of ohmic contacts to SiC, their protection and compatibility with device processing; Schottky contacts to SiC; Schottky barrier formation; Schottky barrier inhomogeneity in SiC materials; technology and design of 4H-SiC Schottky and Junction Barrier Schottky diodes; Si/SiC heterojunction diodes; applications of SiC Schottky diodes in power electronics and temperature/light sensors; high power SiC unipolar and bipolar switching devices; different types of SiC devices including material and technology constraints on device performance; applications in the area of metal contacts to silicon carbide; status and prospects of SiC power devices.

Book Silicon Carbide  Volume 2

    Book Details:
  • Author : Peter Friedrichs
  • Publisher : John Wiley & Sons
  • Release : 2011-04-08
  • ISBN : 9783527629084
  • Pages : 520 pages

Download or read book Silicon Carbide Volume 2 written by Peter Friedrichs and published by John Wiley & Sons. This book was released on 2011-04-08 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide - this easy to manufacture compound of silicon and carbon is said to be THE emerging material for applications in electronics. High thermal conductivity, high electric field breakdown strength and high maximum current density make it most promising for high-powered semiconductor devices. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles. This volume is devoted to high power devices products and their challenges in industrial application. Readers will benefit from reports on development and reliability aspects of Schottky barrier diodes, advantages of SiC power MOSFETs, or SiC sensors. The authors discuss MEMS and NEMS as SiC-based electronics for automotive industry as well as SiC-based circuit elements for high temperature applications, and the application of transistors in PV-inverters. The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development. Among the former are CREE Inc. and Fraunhofer ISE, while the industry is represented by Toshiba, Nissan, Infineon, NASA, Naval Research Lab, and Rensselaer Polytechnic Institute, to name but a few.

Book SiC Technology

    Book Details:
  • Author : Maurizio Di Paolo Emilio
  • Publisher : Springer Nature
  • Release :
  • ISBN : 3031634187
  • Pages : 317 pages

Download or read book SiC Technology written by Maurizio Di Paolo Emilio and published by Springer Nature. This book was released on with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book SiC Materials and Devices

Download or read book SiC Materials and Devices written by Michael Shur and published by World Scientific. This book was released on 2006 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices OCo power switching Schottky diodes and high temperature MESFETs OCo are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology. Contents: SiC Material Properties (G Pensl et al.); SiC Homoepitaxy and Heteroepitaxy (A S Bakin); Ohmic Contacts to SiC (F Roccaforte et al.); Silicon Carbide Schottky Barrier Diode (J H Zhao et al.); High Power SiC PiN Rectifiers (R Singh); Silicon Carbide Diodes for Microwave Applications (K Vassilevski); SiC Thyristors (M E Levinshtein et al.); Silicon Carbide Static Induction Transistors (G C DeSalvo). Readership: Technologists, scientists, engineers and graduate students working on silicon carbide or other wide band gap materials and devices."

Book A Monolithically Integrated Power JFET and Junction Barrier Schottky Diode in 4H Silicon Carbide

Download or read book A Monolithically Integrated Power JFET and Junction Barrier Schottky Diode in 4H Silicon Carbide written by Rahul Radhakrishnan and published by . This book was released on 2012 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficiency of power management circuits depends significantly on their constituent switches and rectifiers. The demands of technology are increasingly running up against the intrinsic properties of Si based power devices. 4H-Silicon Carbide (SiC) has superior properties that make it attractive for high power applications. SiC rectifiers are already a competitive choice and SiC switches have also been commercialized recently. Junction Barrier Schottky (JBS) diodes, which combine the advantages of PN and Schottky, have higher Figure of Merit (FOM) as rectifiers. Among switches, a robust and mature process has been developed for Silicon Carbide Vertical Junction Field Effect Transistors (VJFETs), which currently gives it the highest unipolar FOM. Switches are frequently combined with anti-parallel diodes in power circuits. This thesis describes the development of a SiC-based monolithically integrated power switch and diode. Monolithic integration increases reliability and efficiency, and reduces cost. Because of their superior properties and similarities in fabrication, we chose the SiC VJFET and JBS diode as the switch and rectifier. Detailed design, fabrication and characterization of the integrated switch to block above 800 V and conduct current beyond 100 A/cm2 is explained. In this process, the first physics-based 2-D compact model is developed for reverse leakage in a JBS diode as a function of design parameters. Since the gate-channel junctions of SiC VJFETs cannot be assumed to be abrupt, an existing analytical model for Si VJFETs is extended to account for graded gate-channel junctions. Using these analytical models, design rules are developed for the VJFET and JBS diode. Finite element simulations are used to find the best anode layout of the JBS diode and optimize electric field termination in the integrated device to ensure their capability to operate at high voltage. Finally, a spin-on glass based process is developed for filling the gate trenches of the VJFET to improve long-term robustness in extreme environments. The integrated power switch developed in this thesis points to the attractions of monolithic integration in SiC power circuits. Analytical compact design equations derived here will facilitate faster and easier design of switches and rectifiers for desired circuit operation.

Book Silicon Carbide Power Devices

Download or read book Silicon Carbide Power Devices written by B Jayant Baliga and published by World Scientific. This book was released on 2006-01-05 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices.

Book SiC Materials and Devices

Download or read book SiC Materials and Devices written by and published by Academic Press. This book was released on 1998-07-02 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume addresses the subject of materials science, specifically the materials aspects, device applications, and fabricating technology of SiC.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2005 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sic Materials And Devices   Volume 1

Download or read book Sic Materials And Devices Volume 1 written by Sergey Rumyantsev and published by World Scientific. This book was released on 2006-07-25 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices — power switching Schottky diodes and high temperature MESFETs — are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology.

Book Process Technology for Silicon Carbide Devices

Download or read book Process Technology for Silicon Carbide Devices written by Carl-Mikael Zetterling and published by IET. This book was released on 2002 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains why SiC is so useful in electronics, gives clear guidance on the various processing steps (growth, doping, etching, contact formation, dielectrics etc) and describes how these are integrated in device manufacture.

Book Development of 4H Silicon Carbide JFET based Power Integrated Circuits

Download or read book Development of 4H Silicon Carbide JFET based Power Integrated Circuits written by Yongxi Zhang and published by . This book was released on 2008 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: 4H-Silicon Carbide (4H-SiC) is a promising semiconductor for the next generation of high power, high frequency, and high temperature applications. Significant progresses have been made on SiC technologies since 1990's. Superior device performance demonstrated by SiC discrete power devices is leading to the commercialization of SiC diodes and transistors targeting mid and high power level applications. As compared to the vertical power devices, the lateral device technology promises to fulfill the monolithic integration of both power devices and control circuits. SiC power integrated circuits (PICs) share similar advantages as Si PICs while providing a much higher power handling capability at higher frequency. In addition, SiC power junction field transistor (JFET) is promising for high temperature, reliable operation without suffering from the reliability problems faced by metal-oxide-semiconductor junction field transistors (MOSFETs) and bipolar junction transistors (BJTs). Therefore, the lateral JFET technology is investigated under this research. This thesis describes design, fabrication, characterization, and further optimization and analysis of a novel vertical channel lateral JFET (VC-LJFET) technology in 4H-SiC and the demonstration of the world's first SiC power Integrated circuit. A double reduced surface electric field (RESURF) structure is applied to achieve higher voltage and lower on-resistance for the power lateral JFET (LJFET). A 4-stage buffer circuit based on the resistive-load n-type JFET inverter is designed and integrated with the power LJFET to form a monolithic power integrated circuit. Important fabrication procedures are presented. The fabricated power LJFET demonstrates a blocking voltage of 1028 V and a specific on-resistance of 9.1 m[ohm]; cm2, resulting in a record-high VBR2/RON, SP figure-of-merit (FOM) of 116 MW/cm2 for lateral power devices. The optimized RESURF structure demonstrates blocking capability of 120 V/[micro]m in 4H-SiC. The temperature dependences of important device parameters, such as threshold voltage, transconductance, and electron mobility, are also discussed. Based on the technology, the integration of a high performance lateral power JFET with buffer circuits has been demonstrated for the first time. The SiC LJFET power IC chips demonstrate a record high power level at frequencies up to a few MHz. An on-chip temperature sensing diode is implemented to monitor the chip junction temperature. The rise time and fall time around 20 ns for the SiC power LJFET are observed and remains unchanged even at a junction temperature as high as 250 oC when driven by a Si MOS gate driver. The demonstration of SiC power integration technology points to the robust integrated power electronics applications in the harsh environment and boosts the power level of single-chip power electronic system from 100 W to 1000 W.

Book Advances in Silicon Carbide Processing and Applications

Download or read book Advances in Silicon Carbide Processing and Applications written by Stephen E. Saddow and published by Artech House. This book was released on 2004 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the latest advances in SiC (Silicon Carbide) technology from the leading experts in the field with this new cutting-edge resource. The book is your single source for in-depth information on both SiC device fabrication and system-level applications. This comprehensive reference begins with an examination of how SiC is grown and how defects in SiC growth can affect working devices. Key issues in selective doping of SiC via ion implantation are covered with special focus on implant conditions and electrical activation of implants. SiC applications discussed include chemical sensors, motor-control components, high-temperature gas sensors, and high-temperature electronics. By cutting through the arcane data and jargon surrounding the hype on SiC, this book gives an honest assessment of today's SiC technology and shows you how SiC can be adopted in developing tomorrow's applications.