EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterization and Analysis of Highly Diagonal Terahertz Quantum Cascade Lasers

Download or read book Characterization and Analysis of Highly Diagonal Terahertz Quantum Cascade Lasers written by Chun Wang Ivan Chan and published by . This book was released on 2010 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The as yet unattained milestone of room-temperature operation is essential for establishing Terahertz Quantum Cascade Lasers (THz QCLs) as practical sources of THz radiation. Temperature performance is hypothesized to be limited by upper laser level lifetime reduction due to non-radiative scattering, particularly by longitudinal optical phonons. To address this issue, this work studies highly "diagonal" QCLs, where the upper and lower laser level wave functions are spatially separated to preserve upper laser level lifetime, as well as several other issues relevant to high temperature performance. The highly diagonal devices of this work performed poorly, but the analysis herein nevertheless suggest that diagonality as a design strategy cannot yet be ruled out. Other causes of poor performance in the lasers are identified, and suggestions for future designs are made.

Book Design  Analysis  and Characterization of Indirectly pumped Terahertz Quantum Cascade Lasers

Download or read book Design Analysis and Characterization of Indirectly pumped Terahertz Quantum Cascade Lasers written by Seyed Ghasem Razavipour and published by . This book was released on 2013 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade laser (QCL), as a unipolar semiconductor laser based on intersubband transitions in quantum wells, covers a large portion of the Mid and Far Infrared electromagnetic spectrum. The frequency of the optical transition can be determined by engineering the layer sequence of the heterostructure. The focus of this work is on Terahertz (THz) frequency range (frequency of 1 - 10 THz and photon energy of ~ 4 - 40 meV), which is lacking of high power, coherent, and efficient narrowband radiation sources. THz QCL, demonstrated in 2002, as a perfect candidate of coherent THz source, is still suffering from the empirical operating temperature limiting factor of T [ap] h̳[omega]/kB, which allows this source to work only under a cryogenic system. Most of high performance THz QCLs, including the world record design which lased up to ~ 200 K, are based on a resonant phonon (RP) scheme, whose population inversion is always less than 50%. The indirectly-pumped (IDP) QCL, nicely implemented in MIR frequency, starts to be a good candidate to overcome the aforementioned limiting factor of RP-QCL. A rate equation (RE) formalism, which includes both coherent and incoherent transport process, will be introduced to model the carrier transport of all presented structures in this thesis. The second order tunneling which employed the intrasubband roughness and impurity scattering, was implemented in our model to nicely predict the behavior of the QCL designs. This model, which is easy to implement and fast to calculate, could help us to engineer the electron wavefunctions of the structure with optimization tools. We developed a new design scheme which employs the phonon scattering mechanism for both injecting carrier to the upper lasing state and extracting carrier from lower lasing state. Since there is no injection/extraction state to be in resonance with lasing states, this simple design scheme does not suffer from broadening due to the tunneling. Finally, three different THz IDP-QCLs, based on phonon-photon-phonon (3P) scheme were designed, grown, fabricated, and characterized. The performance of those structures in terms of operating temperature, threshold current density, maximum current density, output optical power, lasing frequency, differential resistance at threshold, intermediate resonant current before threshold, and kBT/h̳[omega] factor will be compared. We could improve the kBT/h̳[omega] factor of the 3P-QCL design from 0.9 in first iteration to 1.3 and the output optical power of the structure from 0.9 mW in first design to 3.4 mW. The performance of the structure in terms of intermediate resonant current and the change in differential resistance at threshold was improved.

Book Spectroscopic Applications of Terahertz Quantum Cascade Lasers

Download or read book Spectroscopic Applications of Terahertz Quantum Cascade Lasers written by Tasmim Alam and published by Cuvillier Verlag. This book was released on 2020-10-29 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers (QCLs) are attractive for high-resolution spectroscopy because they can provide high power and a narrow linewidth. They are particularly promising in the terahertz (THz) range since they can be used as local oscillators for heterodyne detection as well as transmitters for direct detection. However, THz QCL-based technologies are still under development and are limited by the lack of frequency tunability as well as the frequency and output power stability for free-running operation. In this dissertation, frequency tuning and linewidth of THz QCLs are studied in detail by using rotational spectroscopic features of molecular species. In molecular spectroscopy, the Doppler eff ect broadens the spectral lines of molecules in the gas phase at thermal equilibrium. Saturated absorption spectroscopy has been performed that allows for sub-Doppler resolution of the spectral features. One possible application is QCL frequency stabilization based on the Lamb dip. Since the tunability of the emission frequency is an essential requirement to use THz QCL for high-resolution spectroscopy, a new method has been developed that relies on near-infrared (NIR) optical excitation of the QCL rear-facet. A wide tuning range has been achieved by using this approach. The scheme is straightforward to implement, and the approach can be readily applied to a large class of THz QCLs. The frequency and output stability of the local oscillator has a direct impact on the performance and consistency of the heterodyne spectroscopy. A technique has been developed for a simultaneous stabilization of the frequency and output power by taking advantage of the frequency and power regulation by NIR excitation. The results presented in this thesis will enable the routine use of THz QCLs for spectroscopic applications in the near future.

Book Design  Fabrication  and Characterization of Terahertz Quantum Cascade Lasers

Download or read book Design Fabrication and Characterization of Terahertz Quantum Cascade Lasers written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book THz Time Domain Characterization of Amplifying Quantum Cascade Metasurface

Download or read book THz Time Domain Characterization of Amplifying Quantum Cascade Metasurface written by Yue Shen and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Terahertz (THz) quantum cascade lasers (QCLs) are compact electrically pumped unipolar semiconductor laser which can produce a continuous wave radiation of high output power in the range of 1.2 to 5.6 THz. The QC vertical-external-cavity surface-emitting-laser (QC-VECSEL) is an external cavity configuration that supports high-power operation with excellent beam quality and broadband tunability. The key component of the QC-VECSEL is an amplifying reflectarray metasurface, based on a subwavelength array of surface-radiating metal-metal waveguide antenna elements loaded with QC-laser gain material. Despite its importance, up to now the spectral properties of the QC-metasurface have been designed by simulations and have only been verified indirectly through observation of the QC-VECSEL lasing characteristics, or by passive FTIR reflectance measurements at room temperature. Furthermore, design takes place using simulations based upon simplified models for the material loss and the QC-gain, where uncertain Drude model parameters for material losses are used, and the detailed interaction of the intersubband transition with the metasurface is neglected. In the past decade, THz time domain spectroscopy (THz-TDS) has been widely used to investigate gain spectra and laser dynamics of THz QC-lasers based on various ridge waveguide geometries. During my doctoral studies, I designed and built up a reflection-mode THz-TDS system to study amplifying quantum-cascade (QC) metasurface samples as a function of injected current density. The first direct spectral measurements were performed on QC-metasurfaces using reflection-mode THz-TDS. Several different kinds of metasurface were designed that were suitable for study by the THz-TDS system. Extremely strong absorption features for QC-metasurfaces whose resonance frequency designed below 3 THz is measured at zero bias, which is associated with coupling between the metasurface resonance and an intersubband transition within the QC material. In one case, nearly perfect absorption is observed due to the transition from weak to strong light-matter coupling condition. Increase in reflectance are observed as the devices are biased, both due to reduction in intersubband loss and the presence of intersubband gain. Significant phase modulation associated with the metasurface resonance is observed via electrical control for some certain metasurfaces, which may be useful for electrical tuning of QC-VECSEL. These results provide insight into the interaction between the intersubband QC-gain material and the metasurface and modify the design rules for QC-VECSELs for both biased and unbiased regions.

Book Design and Characterization of Quantum Cascade Lasers

Download or read book Design and Characterization of Quantum Cascade Lasers written by Maytee Lerttamrab and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Towards Room temperature Terahertz Quantum Cascade Lasers

Download or read book Towards Room temperature Terahertz Quantum Cascade Lasers written by Chun Wang Ivan Chan and published by . This book was released on 2015 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Terahertz Quantum Cascade Lasers (THz QCLs) are arguably the most promising technology today for the compact, efficient generation of THz radiation. Their main limitation is that they require cryogenic cooling, which dominates their ownership cost. Therefore, achieving room-temperature operation is essential for the widespread adoption of THz QCLs. This thesis analyzes the limitations of THz QCL maximum lasing temperature (Tmax) and proposes solutions. THz QCL Tmax is hypothesized to be limited by a fundamental trade-off between gain oscillator strength ful and upper-level lifetime [Tau]. This so-called "ful[Tau] tradeoff" is shown to explain the failure of designs which target [Tau] alone. A solution is proposed in the form of highly diagonal (low ful) active region design coupled with increased doping. Experimental results indicate the strategy to be promising, but heavily doped designs are shown to suffer band-bending effects which may deteriorate performance. In order to treat these band-bending effects, which are typically neglected in previous THz QCL designs, a fast transport simulation tool is developed. Scattering integrals are simplified using the assumption of thermalized sub bands. Results comparable to ensemble Monte Carlo are achieved at a fraction of the computational expense. Carrier leakages to continuum states are also investigated, although they are found to have little effect. Other work in this thesis includes the optimization of double-metal THz waveguides to enable Tmax ~ 200 K, a current world record. Furthermore, laser designs to investigate the leakages of carriers to high-energy subbands and continuum states were fabricated and tested; such parasitic leakages are suggested to be small. Finally, the design of gain media for applications is examined, notably the development of 4.7 THz gain media for OI line detection in astrophysics, and the development of broadband heterogeneous gain media for THz comb generation.

Book Terahertz Quantum Cascade Lasers

Download or read book Terahertz Quantum Cascade Lasers written by Saeed Fathololoumi and published by . This book was released on 2010 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization of Mid infrared Quantum Cascade Lasers

Download or read book Characterization of Mid infrared Quantum Cascade Lasers written by David Patrick Burghoff and published by . This book was released on 2009 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers provide some of the highest output powers available for light in the mid-infrared range (from 3 to 8 m). As many of their applications require portability, designs that have a high wall-plug efficiency are essential, and were designed and grown by others to achieve this goal. However, because a large fraction of these devices did not operate at all, very few of the standard laser measurements could be performed to determine their properties. Therefore, measurements needed to be performed that could non-destructively probe the behavior of QCLs while still providing useful information. This thesis explores these types of measurements, all of which fall into the category of device spectroscopy. Through polarization-dependent transmission and photovoltaic spectroscopy, a large portion of the quantum mechanical bandstructure could be determined, along with many of the parameters characterizing crystal growth quality. In addition, high-resolution transmission spectroscopy was used to find the properties of the QCL waveguide. In order to find the correspondence between theory and experiment, bandstructure simulations were performed using a three-band p model, and two-dimensional electromagnetic simulations were performed to describe the laser's optical properties. These simulations were found to be in relatively good agreement with the device measurements, and any discrepancies were found to be consistent with problems in the growth and fabrication.

Book Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical Phonon Scattering

Download or read book Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical Phonon Scattering written by and published by . This book was released on 2009 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron transport properties of terahertz (THz) longitudinal optical (LO)-phonon quantum cascade (QC) structures were modeled, in order to investigate high gain quantum cascade laser (QCL) structures. A new structure, a step well QC structure, was proposed. Under such an arrangement, there are three main energy levels within the step well, where the transition from the upper state to the middle state is at the THz radiative spacing and the transition from the middle state to the lower state is at or near the LO-phonon energy (~ 36 meV in GaAs). Because of the inherent difficulties in using rate equations for this type of transport analysis, a Monte Carlo simulation was developed. Step well injectors were modeled and shown to be capable of high injection efficiencies (~ 90%), higher than previously obtained. Comparisons to conventional square well LO-phonon structures are made, including a Monte Carlo analysis of a high power THz QCL. Interface roughness scattering was shown to be significant only for roughness greater than approximately one monolayer. It was found that step well structures are capable of high gains and injection efficiencies, with comparable characteristics to other square well designs, but do have increased scattering from the upper state to the lower states.

Book Spectral Characterization of a Mid infrared Quantum cascade Laser

Download or read book Spectral Characterization of a Mid infrared Quantum cascade Laser written by Nathan E. Rines and published by . This book was released on 2006 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Temperature and High Power Terahertz Quantum Cascade Lasers

Download or read book High Temperature and High Power Terahertz Quantum Cascade Lasers written by and published by . This book was released on 2007 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Terahertz Time domain Characterization of Amplifying Quantum Cascade Metasurface

Download or read book Terahertz Time domain Characterization of Amplifying Quantum Cascade Metasurface written by Yue Shen and published by . This book was released on 2019 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: The THz quantum-cascade vertical-external-cavity surface-emitting-laser (QC-VECSEL) is a recently developed approach for designing high-power, electrically pumped THz lasers with excellent beam quality and broadband tunability. The key component of the QC-VECSEL is an amplifying reflectarray metasurface, based on a subwavelength array of surface radiating metal-metal waveguide antenna elements loaded with QC-laser gain material. Despite its importance, the gain properties of the QC-metasurface are designed by simulation and have only been verified indirectly through observation of the QC-VECSEL lasing characteristics, or by passive FTIR reflectance measurements at room-temperature. THz time-domain spectroscopy (TDS) has been widely used to investigate gain spectra and laser dynamics of THz QC-lasers based on various ridge waveguide geometries. In this thesis, I describe my construction of a THz TDS system and present the first direct spectral measurement using reflection-mode THz TDS of an amplifying QC-metasurface resonant at 2.6 THz under different conditions. The large surface-radiating aperture of the metasurface (1.5 1.5 mm2 in this case) eases free-space TDS measurements compared to ridge waveguide QC-devices with sub-wavelength sized facets.

Book Design and Characterization of a Double transition Quantum Cascade Laser

Download or read book Design and Characterization of a Double transition Quantum Cascade Laser written by Jingyuan Linda Zhang and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Temperature Operating Narrow Period Terahertz Quantum Cascade Laser Designs

Download or read book High Temperature Operating Narrow Period Terahertz Quantum Cascade Laser Designs written by Li Wang and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presently, terahertz quantum cascade lasers still suffer from operations below room temperature, which prohibits extensive applications in terahertz spectra. The past continuous contributions to improving the operating temperatures were by clarifying the main thermal degradation process and proposing different designs with the optical gain demonstrating higher temperature cut-offs. Recent designs have attempted to employ a narrow period length with a simplified and clean state system, and reach renewed operating temperatures above 200 K. This study reveals how historic designs approach such narrow-period designs, discus the limitations within those designs, and show further possible designs for higher operating temperatures.

Book Design and Modeling of High Temperature Terahertz Quantum Cascade Lasers

Download or read book Design and Modeling of High Temperature Terahertz Quantum Cascade Lasers written by Benjamin Adams Burnett and published by . This book was released on 2016 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The portion of the electromagnetic spectrum between roughly 300 GHz and 10 THz is nicknamed the "THz Gap" because of the enormous difficulty encountered by researchers to devise practical sources covering it. Still, the quantum cascade laser (QCL) has emerged over recent years as the most promising approach to a practical source in the 1-5 THz range. First developed in the higher-frequency mid-IR, where they are now widely available, QCLs were later extended to the THz where a host of greater design challenges awaited. Lasing in QCLs is based on intersubband optical transitions in semiconductor quantum wells, the energy of which can be chosen by design ("bandstructure engineering"). However, simply building a THz optical transition is insufficient; a good design must also produce significant population inversion by the applied cascading electron current, and this requires deep understanding of the transport physics. So far, no THz QCL has operated above the temperature of 200 K, even though the reasons prohibiting high temperature operation are well known. The goal of this Thesis is to put novel ideas for high-temperature operation of THz QCL active regions through rigorous theoretical testing. The central enabling development is a density-matrix-based model of transport and optical properties tailored for use in QCLs, which is general enough that widely varying design concepts can be tested using the same core principles. Importantly, by simulating QCLs more generally, fewer a priori assumptions are required on part of the researcher, allowing for the true physics to emerge on its own. It will be shown that this gives rise to new and useful insights that will help to guide the experimental efforts towards realization of these devices. One specific application is a quantum dot cascade laser (QDCL), a highly ambitious approach in which the electrons cascade through a series of quantum dots rather than wells. Benefits are expected due to the suppression of nonradiative scattering, brought about by the discrete spectrum of electronic states. However, this in turn leads to a highly different physics of transport and effects that are not well understood, even in the case of perfect materials. This work will show that while the benefits are clear, naive scaling of existing QCL designs to the quantum dot limit will not work. An alternative strategy is given based on a revised understanding of the nature of transport, and is put to a test of practicality in which the effects of quantum dot size inhomogeneity are estimated. Another application is to the already existing method of THz difference frequency generation in mid-IR QCLs, which occurs via a difference-frequency susceptibility $\chi^{(2)}$ in the active region itself. For this purpose, the model is extended to enable a coherent and nonperturbative calculation of optical nonlinearities. First, the generality of the method is displayed through the emergence of exotic nonlinear effects, including electromagnetically-induced transparency, in mock quantum-well systems. Then, the modeling concepts are applied to the real devices, where two new and important mechanisms contributing to $\chi^{(2)}$ are identified. Most importantly, it is predicted that the QCL acts as an extremely fast photodetector of itself, giving rise to a current response to the mid-IR beatnote that provides a better path forward to the generation of frequencies below ~2 THz. Finally, the fundamentals of density matrix transport theory for QCLs are revisited to develop a model for conventional THz QCL designs eliminating the usual phenomenological treatment of scattering. The new theory is fully developed from first principles, and in particular sheds light on the effects of scattering-induced electron localization. The versatility of the model is demonstrated by successful simulation of varying active region designs.