Download or read book Case Studies in Atomic Collision Physics written by E. W. McDaniel and published by Elsevier. This book was released on 2013-09-11 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Case Studies in Atomic Collision Physics II focuses on studies on the role of atomic collision processes in astrophysical plasmas, including ionic recombination, electron transport, and position scattering. The book first discusses three-body recombination of positive and negative ions, as well as introduction to ionic recombination, calculation of the recombination coefficient, ions recombining in their parent gas, and three-body recombination at moderate and high gas-densities. The manuscript also takes a look at precision measurements of electron transport coefficients and differential cross sections in electron impact ionization. The publication examines the interpretation of spectral intensities from laboratory and astrophysical plasmas, atomic processes in astrophysical plasmas, and polarized orbital approximations. Discussions focus on collision rate experiments, line spectrum, collisional excitation and ionization, polarized target wave function, and application to positron scattering and annihilation. The text also ponders on cross sections and electron affinities and the role of metastable particles in collision processes. The selection is a valuable source of data for physicists and readers interested in atomic collision.
Download or read book Atomic and Molecular Processes in Controlled Thermonuclear Fusion written by M. R. McDowell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NATO Advanced Study Institute on "Atomic and Molecular Processes in Controlled TheI'IllOnuclear Fusion" was held at Chateau de Bonas, Castera-Verduzan, Gel's, France, from 13th to 24th August 1979, and this volume contains the text of the invited lectures. The Institute was supported by the Scientific Affairs Division of NATO, and additional support was received from EURATOM and the United States National Science Foundation. The Institute was attended by 88 scientists, all of whom were active research workers in control of thermonuclear plasmas, 01' atomic and molecular physics, 01' both. In addition to the formal lectures, printed in this volume, which were intended to be pedagogic, more than twenty research seminars were given by participants. The first half of the Institute was directed to introducing atomic and molecular theoretical and experimental physicists to the physics of controlled thermonuclear fusion. Most attention was paid to magnetic confinement, and within that field, to tokamaks. MI'.
Download or read book Advances in Atomic Molecular and Optical Physics written by and published by Elsevier. This book was released on 1994-01-04 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.
Download or read book Atomic Processes in Electron Ion and Ion Ion Collisions written by F. Brouillard and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Four years after a first meeting in BADDECK, Canada, on the Physics of Ion-Ion and Electron-Ion collisions, a second Nato Advanced Study Institute, in HAl~/Lesse, Belgium, reexamined the subject which had become almost a new one, in consideration of the many important developments that had occured in the mean time. The developments have been particularly impressive in two areas : the di-electronic recombination of electrons with ions and the collisional processes of mUltiply charged ions. For dielectronic recombination, a major event was the obtainment, in 1983, of the first experimental data. This provided, at last, a non speculative basis for the study of that intricate and subtle process and strongly stimulated the theoretical activities. Multiply charged ions, on the other hand, have become popular, thanks to the development of powerful ion sources. This circumstance, together with a pressing demand from thermonuclear research for ionisation and charge exchange cross sections, has triggered systematic experimental investigations and new theoretical studies, which have contributed to considerably enlarge, over the last five years, our understanding of the collisional processes of multiply charged ions. Dielectronic recombination and multiply charged ions were therefore central points in the programme of the A.S.I. in HAN/Lesse and are given a corresponding emphasis in the present book.
Download or read book Electron Emission in Heavy Ion Atom Collisions written by Nikolaus Stolterfoht and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron EM reviews the theoretical and experimental work of the last 30 years on continuous electron emission in energetic ion-atom collisions. High incident energies for which the projectile is faster than the mean orbital velocity of the active electron are considered. Emphasis is placed on the interpretation of ionization mechanisms. They are interpreted in terms of Coulomb centers associated with the projectile and target nuclear fields which strongly interact with the outgoing electron. General properties of the two-center electron emission are analyzed. Particular attention is given to screening effects. A brief overview of multiple ionization processes is also presented. The survey concludes with a complete compilation of experimental studies of ionization cross sections.
Download or read book Advances in Atomic and Molecular Physics written by and published by Academic Press. This book was released on 1978-04-27 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Atomic and Molecular Physics
Download or read book The Physics of Multiply and Highly Charged Ions written by F.J. Currell and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is arguable that most of chemistry and a large portion of atomic physics is concemed with the behaviour of the 92 naturally occurring elements in each of 3 charge states (+1, 0, -1); 276 distinct species. The world of multiply and highly charged ions provides a further 4186 species for us to study. Over 15 times as many! It is the nature of human beings to explore the unknown. This nature is par ticularly strong in physicists although this may not be readily apparent because theses explorations are undertaken in somewhat abstract 'spaces'. It is, then, no surprise that we have begun to explore the realm of multiply and highly charged ions. Over the past few decades, a consistent1y high quality body of work has emerged as the fruits of this exploration. This intemationally based subject, pursued in universities and research laboratories worldwide, has ex panded beyond its roots in atomic physics. We now see it embracing elements of surface science, nuclear physics and plasma physics as well as drawing on a wide range of technologies. This speciality offers new tests of some of our most fundamental ideas in physics and simultaneously new medical cures, new ways of fabricating electronic gadgets, a major hope for clean sustainable energy and explanations for astrophysical phenomena. It is both a deeply fundamental and a widely applicable area of investigation.
Download or read book Physics of Ion Ion and Electron Ion Collisions written by F. Brouillard and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the earliest civilizations regarded the universe as organized around four principles, the four "elements" earth. water, air, and fire. Fire, which was the source of light and as such possessed an immaterial quality related to the spiritual world. was clearly the most impressive of these elements, although its quanti tative importance could not have been properly discerned. M- ern science has changed the names, but macroscopic matter is still divided into four states. The solid, liquid, and gaseous states are ordinary states, but the fourth state of matter, the plasma state, has retained a somewhat extraordinary character. It is now recognized that most of the matter of the universe is in the ionized state. but on the earth. the plasma state is still the exception. Hence the importance and also the difficulty of investigations dealing with ionized matter, which have been greatly furthered by the development of thermonuclear fusion research. The study of matter in the ionized state comprises a large diversity of problems belonging to many different branches of phys ics. A number of them relate to the microscopic properties of plasmas and concern the structure and the collisional behavior of atomic constituents. Although they are clearly of basic importance, their relevance to thermonuclear research was at first overlooked, at a time when most of the effort was concentrated on designing fusion devices and understanding macroscopic phenomena, mostly of an electromagnetic nature. At present.
Download or read book Fast Ion atom and Ion molecule Collisions written by Dzevad Belkic and published by World Scientific. This book was released on 2013 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.This book is accompanied by Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy Volume 2 - Fast Collisions of Light Ions with Matter: Charge Exchange and Ionization.
Download or read book Progress in Atomic Spectroscopy written by H.J. Beyer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: H. J. BEYER AND H. KLEINPOPPEN We are pleased to present Part D of Progress in Atomic Spectroscopy to the scientific community active in this field of research. When we invited authors to contribute articles to Part C to be dedicated to Wilhelm Hanle, we received a sufficiently enthusiastic response that we could embark on two further volumes and thus approach the initial goal (set when Parts A and B were in the planning stage) of an almost comprehensive survey of the current state of atomic spectroscopy. As mentioned in the introduction to Parts A and B, new experimental methods have enriched and advanced the field of atomic spectroscopy to such a degree that it serves not only as a source of atomic structure data but also as a test ground for fundamental atomic theories based upon the framework of quantum mechanics and quantum electrodynamics. However, modern laser and photon correlation techniques have also been applied successfully to probe beyond the "traditional" quantum mechanical and quantum electrodynamical theories into nuclear structure theories, electro weak theories, and the growing field of local realistic theories versus quan tum theories. It is obvious from the contents of this volume and by no means surprising that applications of laser radiation again played a decisive role in the development of new and high-precision spectroscopic techniques.
Download or read book Highlights of Astronomy written by C. de Jager and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: After the same pattern as the XIII th General Assembly of the International Astronom ical Union the present Volume of the Highlights in Astronomy contains the texts of the invited discourses given at the XIVth General Assembly held in Brighton, England, August 1970. It contains further the papers and discussion remarks presented at the six joint discussions, as well as the invited papers given at the special session on the Moon. In addition this Volume contains the papers given at the joint meeting of Commissions 24, 27, 30, 33 and 37 on RR Lyrae Stars. It goes without saying that the nearly hundred papers printed in this Volume represent only a minor part of all matter dealt with at the XIVth General Assembly of the Union; the many important discussions that took place in a few hundred commission meetings are not included. For short abstracts and reviews of these the reader is referred to Transactions of the International Astronomical Union XIVB. I wish to thank those who contributed to this Volume for the speed in submitting the manuscripts of their papers. This, together with the efficiency of the Publishers allowed for a rapid publication.
Download or read book Breaking Paradigms In Atomic And Molecular Physics written by Eugene Oks and published by World Scientific. This book was released on 2015-03-25 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the following counterintuitive theoretical results breaking several paradigms of quantum mechanics and providing alternative interpretations of some important phenomena in atomic and molecular physics. 1) Singular solutions of the Schrödinger and Dirac equations should not have been always rejected: they can explain the experimental high-energy tail of the linear momentum distribution in the ground state of hydrogenic atoms. Application: a unique way to test intimate details of the nuclear structure by performing atomic (rather than nuclear) experiments and calculations. 2) Charge exchange is not really an inherently quantal phenomenon, but rather has classical roots. Application: continuum lowering in plasmas. 3) The most challenging problem of classical physics that led to the development of quantum mechanics — the failure to explain the stability of atoms — can be solved within a classical formalism that has its roots in Dirac's works. The underlying physics can be interpreted as a non-Einsteinian time dilation. 4) In two-electron atoms/ions, the spin-spin interaction (singular in its nature), usually considered unimportant, makes a significant contribution to the binding energy. 5) In magnetized plasmas the standard Inglis-Teller concept, concerning the number of observed lines in spectral series of hydrogen, breaks down. Application: new plasma diagnostic. 6) Extrema in transition energies of molecules/quasimiolecules can result in dips (rather than usually considered satellites) within spectral lines. Application: the experimental determination of rates of charge exchange between multicharged ions — important for magnetic fusion in Tokamaks, for population inversion in the soft x-ray and VUV ranges, for ion storage devices, and for astrophysics.
Download or read book Variational Methods in Electron Atom Scattering Theory written by Robert K. Nesbet and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Chapter 3. Practical details of the computational implementation of the variational theory are given in Chapter 4. Chapters 5 and 6 summarize recent appli cations of the variational theory to problems of experimental interest, with many examples of the successful interpretation of complex structural fea tures observed in scattering experiments, and of the quantitative prediction of details of electron-atom scattering phenomena.
Download or read book Coherence and Correlation in Atomic Collisions written by Hans Kleinpoppen and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: H. KLEINPOPPEN AND J. F. WILLIAMS It has only very recently become possible to study angular correlations and coherence effects in different areas of atomic collision processes: These investigations have provided us with an analysis of experimental data in terms of scattering amplitudes and their phases, of target parameters such as orientation, alignment, and state multipoles, and also of coherence parameters (e. g. , the degree of coherence of excita tion). In this way the analysis of electron-photon, ion-photon, atom-photon, or electron-ion coincidences from electron-atom, ion-atom, or atom-atom collisional excitation has led to a breakthrough such that the above quantities represent most crucial and sensitive tests for theories of atomic collision processes. Similarly, the powerful (e, 2e) experiments (electron-electron coincidences from impact ionization of atoms) have attracted much attention where improved experimental studies and detailed theoretical description provide a wealth of information on either the col lisional ionization process or the atomic structure of the target atom. Interference effects, many-electron correlations, and energy and angular momen tum exchange between electrons in a Coulomb field playa decisive role in the under standing of postcollision interactions. New results on coherence effects and orienta tion and alignment in collisional processes of ions with surfaces and crystal lattices show links to relevant interference phenomena in atomic collisions. In small-angle elastic electron-atom scattering the effect of angular coherence can be studied in a crossed beam experiment.
Download or read book Comments on Atomic and Molecular Physics written by and published by . This book was released on 1995 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Atomic and Molecular Collisions written by R. E. Johnson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: In working with graduate students in engineering physics at the University of Virginia on research problems in gas kinetics, radiation biology, ion materials interactions, and upper-atmosphere chemistry, it became quite apparent that there was no satisfactory text available to these students on atomic and molecular collisions. For graduate students in physics and quantum chemistry and researchers in atomic and molecular interactions there are a large number of excellent advanced texts. However, for students in applied science, who require some knowledge and understanding of col lision phenomena, such texts are of little use. These students often have some background in modern physics and/or chemistry but lack graduate level course work in quantum mechanics. Such students, however, tend to have a good intuitive grasp of classical mechanics and have been exposed to wave phenomena in some form (e. g. , electricity and magnetism, acoustics, etc. ). Further, their requirements in using collision processes and employing models do not generally include the use of formal scattering theory, a large fraction of the content of many advanced texts. In fact, most researchers who work in the area of atomic and molecular collisions tend to pride themselves on their ability to describe results using simple theoretical models based on classical and semiclassical methods.
Download or read book Progress in Atomic Spectroscopy written by W. Hanle and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 811 pages. Available in PDF, EPUB and Kindle. Book excerpt: W. HANLE and H. KLEINPOPPEN In 1919, in the first edition of Atombau and Spektrallinien, Sommerfeld referred to the immense amount of information which had been accumu lated during the first period of 60 years of spectroscopic practice. Sommer feld emphasized that the names of Planck and Bohr would be connected forever with the efforts that had been made to understand the physics and the theory of spectral lines. Another period of almost 60 years has elapsed since the first edition of Sommerfeld's famous monograph. As the editors of this monograph, Progress in Atomic Spectroscopy, we feel that the present period is best characterized by the large variety of new spec troscopic methods that have been invented in the last decades. Spectroscopy has always been involved in the field of research on atomic structure and the interaction of light and atoms. The development of new spectroscopic methods (i.e., new as compared to the traditional optical methods) has led to many outstanding achievements, which, together with the increase of activity over the last decades, appear as a kind of renaissance of atomic spectroscopy.