EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Carbons for Electrochemical Energy Storage and Conversion Systems

Download or read book Carbons for Electrochemical Energy Storage and Conversion Systems written by Francois Beguin and published by CRC Press. This book was released on 2009-11-18 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: As carbons are widely used in energy storage and conversion systems, there is a rapidly growing need for an updated book that describes their physical, chemical, and electrochemical properties. Edited by those responsible for initiating the most progressive conference on Carbon for Energy Storage and Environment Protection (CESEP), this book undoub

Book Nanoporous Carbons for Soft and Flexible Energy Devices

Download or read book Nanoporous Carbons for Soft and Flexible Energy Devices written by Francesca Borghi and published by Springer Nature. This book was released on 2022-01-12 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an interesting snapshot of new research within the fields of flexible and soft devices which use porous carbon-based materials. The increase in demand for soft and flexible electronics, electrochemical energy storage/conversion systems, piezoresistive pressure sensors has promoted the development of new strategies for the synthesis and integration of nanoporous carbon (NPC) into flexible and soft polymers and inorganic textures. The structural properties of such NPC materials combined with their mechanical, conductive and catalytic properties, show promising results for the technology they are designed for, which can be useful solutions in many other disciplines. An in-depth discussion of the use of NPC materials in different energy devices is provided in every chapter, while at the same time the knowledge of the reader on the various applications where these materials can be used will be broadened. This book sheds new light on nanoporous carbon-based materials and will be of great interest to graduate students and professionals working in this field.

Book High Temperature Electrochemical Energy Conversion and Storage

Download or read book High Temperature Electrochemical Energy Conversion and Storage written by Yixiang Shi and published by CRC Press. This book was released on 2017-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: As global demands for energy and lower carbon emissions rise, developing systems of energy conversion and storage becomes necessary. This book explores how Electrochemical Energy Storage and Conversion (EESC) devices are promising advanced power systems that can directly convert chemical energy in fuel into power, and thereby aid in proposing a solution to the global energy crisis. The book focuses on high-temperature electrochemical devices that have a wide variety of existing and potential applications, including the creation of fuel cells for power generation, production of high-purity hydrogen by electrolysis, high-purity oxygen by membrane separation, and various high-temperature batteries. High-Temperature Electrochemical Energy Conversion and Storage: Fundamentals and Applications provides a comprehensive view of the new technologies in high-temperature electrochemistry. Written in a clear and detailed manner, it is suitable for developers, researchers, or students of any level.

Book Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion

Download or read book Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion written by Rajib Paul and published by Elsevier. This book was released on 2019-07-20 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion presents a comprehensive overview of recent theoretical and experimental developments and prospects on carbon-based nanomaterials for thermal, solar and electrochemical energy conversion, along with their storage applications for both laboratory and industrial perspectives. Large growth in human populations has led to seminal growth in global energy consumption, hence fossil fuel usage has increased, as have unwanted greenhouse gases, including carbon dioxide, which results in critical environmental concerns. This book discusses this growing problem, aligning carbon nanomaterials as a solution because of their structural diversity and electronic, thermal and mechanical properties. - Provides an overview on state-of-the-art carbon nanomaterials and key requirements for applications of carbon materials towards efficient energy storage and conversion - Presents an updated and comprehensive review of recent work and the theoretical aspects on electrochemistry - Includes discussions on the industrial production of carbon-based materials for energy applications, along with insights from industrial experts

Book Carbon Nanomaterials for Electrochemical Energy Technologies

Download or read book Carbon Nanomaterials for Electrochemical Energy Technologies written by Shuhui Sun and published by CRC Press. This book was released on 2017-11-20 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers comprehensive coverage of carbon-based nanomaterials and electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, and hydrogen generation and storage, as well as the latest material and new technology development. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, degradation mechanisms, challenges, and strategies. With in-depth discussions ranging from electrochemistry fundamentals to engineering components and applied devices, this all-inclusive reference offers a broad view of various carbon nanomaterials and technologies for electrochemical energy conversion and storage devices.

Book Electrochemical Energy Systems

Download or read book Electrochemical Energy Systems written by Artur Braun and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-03 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for anyone interested in renewable energy for a sustainable future of mankind. Batteries, fuel cells, capacitors, electrolyzers and solar cells are explained at the molecular level and at the power plant level, in their historical development, in their economical and political impact, and social change. Cases from geophysics and astronomy show that electrochemistry is not confined to the small scale. Examples are shown and exercised.

Book Functional Carbon Materials for Electrochemical Energy Storage

Download or read book Functional Carbon Materials for Electrochemical Energy Storage written by Huihui Zhou and published by . This book was released on 2015 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to create uniformly distributed nanopores with large surface area, leading to high-performance electrodes with high capacitance, excellent rate performance and stable cycling, even under a high working voltage of 1.6V. The second part of this dissertation work further improved the capacitance of the carbon electrodes by fluorine doping. This doping process enhances the affinity of the carbon surface with organic electrolytes, leading to further improved capacitance and energy density. In the third part, carbon materials were synthesized with high surface area, capacitance and working voltage of 4V in organic electrolyte, leading to the construction of prototyped devices with energy density comparable to those of the current lead-acid batteries. Besides the abovementioned research, hierarchical graphitic carbons were also explored for lithium ion batteries and supercapacitors. Overall, through rational design of carbons with optimized pore configuration and surface chemistry, carbon electrodes with improved energy density and rate performance were improved significantly. Collectively, this thesis work systematically unveils simple yet effective strategies to achieve high performance carbon-based supercapacitors with high power density and high energy density, including the following aspects: 1) Constructed electrodes with high capacitance through building favorable ion/electron transportation pathways, tuning pore structure and pore size. 2) Improved the capacitance through enhancing the affinity between the carbon electrodes and electrolytes by doping the carbons with heteroatoms. 3) Explored and understand the roles of heteroatom doping in the capacitive behavior by both experimental measurement and computational modeling. 4) Improved energy density of carbon electrodes by enlarging their working voltage in aqueous and organic electrolyte. 5) Scalable and effective production of hierarchically porous graphite particles through aerosol process for use as the anode materials of lithium ion batteries. These strategies can be extended as a general design platform for other high-performance energy storage materials such as fuel cells and lithium-ion batteries.

Book Nanostructured  Functional  and Flexible Materials for Energy Conversion and Storage Systems

Download or read book Nanostructured Functional and Flexible Materials for Energy Conversion and Storage Systems written by Alagarsamy Pandikumar and published by Elsevier. This book was released on 2020-05-27 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics. Covers the importance of energy conversion and storage systems and the application of nanostructured functional materials toward energy-relevant catalytic processes Discusses the basic principles involved in energy conversion and storage systems Presents the role of nanostructured functional materials in the current scenario of energy-related research and development

Book Electrochemical Energy Conversion and Storage Systems for Future Sustainability

Download or read book Electrochemical Energy Conversion and Storage Systems for Future Sustainability written by Aneeya Kumar Samantara and published by CRC Press. This book was released on 2020-11-16 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new volume discusses new and well-known electrochemical energy harvesting, conversion, and storage techniques. It provides significant insight into the current progress being made in this field and suggests plausible solutions to the future energy crisis along with approaches to mitigate environmental degradation caused by energy generation, production, and storage. Topics in Electrochemical Energy Conversion and Storage Systems for Future Sustainability: Technological Advancements address photoelectrochemical catalysis by ZnO, hydrogen oxidation reaction for fuel cell application, and miniaturized energy storage devices in the form of micro-supercapacitors. The volume looks at the underlying mechanisms and acquired first-hand information on how to overcome some of the critical bottlenecks to achieve long-term and reliable energy solutions. The detailed synthesis processes that have been tried and tested over time through rigorous attempts of many researchers can help in selecting the most effective and economical ways to achieve maximum output and efficiency, without going through time-consuming and complex steps. The theoretical analyses and computational results corroborate the experimental findings for better and reliable energy solutions.

Book Development of Flexible  Carbon based Electrochemical Energy Storage Electrodes

Download or read book Development of Flexible Carbon based Electrochemical Energy Storage Electrodes written by Ricky Tjandra and published by . This book was released on 2019 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research into energy storage and conversion technologies has skyrocketed within the past few decades, motivated by the increased energy demands of our society and the threat of depleting energy sources. One of the exciting forefronts of energy storage research is the development of flexible electrochemical energy storage systems. This area of active research is fueled by the popularity of the Internet-of-Things (IOT), smart wearables/clothing and flexible electronics. A distinct lack of commercially available electrochemical energy storage options that can be flexed, bent, stretched and twisted is currently available to power these devices. Instead, most of today's flexible electronic and wearables rely on rigid cell formats such as cylindrical and prismatic cells. The problem of flexible energy storage devices can be broken down into 2 deficiencies: the lack of flexible electrodes that can match the performance of their rigid counterparts and the lack of high-performance solid-state electrolytes. Carbon-based materials, especially nanoscale materials such as graphene, are a potential solution to this problem due to their electronic conductivity, relative abundance, energy storage capabilities, and ability to be used in all parts of the energy storage system. All the work presented in this thesis involves the development and applications of carbon-based materials for flexible electrochemical energy storage systems. This thesis will explore two different pathways of achieving flexible electrodes based on carbon-based materials: - Replacement of non-flexible metal foil current collectors using flexible carbon-based current collectors - Elimination of current collectors and binders by using carbon-based, free-standing materials Firstly, this thesis will explore the use of carbon cloth as a substrate for a novel TiO2 nanocrystal material for use as an anode in flexible lithium-ion supercapacitors. Although lithium-ion supercapacitors are the focus of this study, the same composite material can also be used as an anode in traditional lithium-ion batteries. The resulting carbon cloth/TiO2 composite is able to withstand 100 flexion cycles while still retaining its energy storage capabilities, showing the advantage of the carbon cloth as a substrate when compared to traditional metal foils. The composite is also successfully integrated into a flexible pouch cell that delivers an excellent reversible capacity of 270 mAh g-1. This work establishes that carbon cloth can be used to replace metal foils as a flexible current collector without sacrificing electrochemical performance. Secondly, this thesis explores the use of a nitrogen-rich carbon foam based on the carbonization of melamine formaldehyde and graphene oxide for use in lithium-ion hybrid capacitors. The foam presented here can be used as-is as a flexible, free-standing, binder-free anode for lithium-ion hybrid capacitors/batteries. Furthermore, the foam can also be used as a 3-dimensional current collector for other active materials both in the anode and the cathode, which demonstrates its versatility for electrochemical energy storage systems. An all-carbon based lithium-ion hybrid supercapacitor has been fabricated using the foam as both an active material for the anode and the current collector for the activated carbon cathode. The cell shown in this chapter achieved an energy density of 40 Wh kg-1 which is superior to that reported in the literature that are based purely on carbon materials. The work presents a novel carbon-based flexible electrode material and concept device that also enables the removal of binders and current collectors from traditional batteries and supercapacitors, bringing us one step closer to achieving a fully flexible electrochemical energy storage system. Finally, graphene quantum dots (GQDs) have been synthesized using a simple peroxide-assisted method. The GQDs are then electrodeposited onto carbon cloth to make an all-carbon, binder-free, flexible electrode for supercapacitors. This work builds off the TiO2/carbon cloth composite by replacing the TiO2 with a carbon-based nanomaterial. Presently reported research has involved the use of GQDs either in conjunction with another active material or used as an active material on rigid, planar substrates. We have shown that GQDs can function as a stand-alone active material for EDLC capacitors. At the time of writing, this work shows the first such use of GQDs on a non-planar, flexible substrate for supercapacitors. All the work in this thesis centers around the use of carbon-based materials and their composites towards the development of flexible electrodes for lithium-ion batteries, supercapacitors and their hybrids. This thesis provides insights into the viability of using various carbon-based materials in different aspects of flexible electrodes and provides a basis for future investigations into this topic.

Book Electrode Materials for Energy Storage and Conversion

Download or read book Electrode Materials for Energy Storage and Conversion written by Mesfin A. Kebede and published by CRC Press. This book was released on 2021-11-17 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.

Book Collagen Derived Materials

Download or read book Collagen Derived Materials written by Feng Wang and published by John Wiley & Sons. This book was released on 2022-02-14 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: b”Collagen-Derived MaterialsComprehensive Resource for Current Ideas and Strategies for the Synthesis and Characterization of Advanced Collagen-Derived Materials This book presents and summarizes new synthetic strategies and multi-functional applications of collagen-derived materials in electrochemical energy storage and conversion. Through easily-comprehensible illustrations and images, the book presents basic knowledge for collagen-derived materials (including gelatin and collagen-derived carbons) and their typical synthesis and applications, thus enabling students and new researchers to obtain a thorough understanding of different materials and corresponding application areas. This book also serves as an important reference book for scientists and engineers in different research fields. It presents the up-to-date ideas and strategies for the synthesis and characterization of advanced collagen-derived materials, as well as multi-functional applications (especially in energy-related areas). Sample topics covered within the book include: Structural compositions, properties, and extraction of collagen and gelatin Precursors, structural compositions, and synthesis of collagen-derived carbons Applications of collagen-derived materials in electrochemical energy storage and conversion Applications of collagen-derived materials as electrode and supporting materials in the electrochemical energy storage and conversion systems, including capacitors, batteries, and electrocatalysts Challenges and opportunities for the design and synthesis of different collagen-derived materials For electrochemists, materials scientists, chemical engineers and students in related programs of study who are interested in the topic of collagen-derived materials, Collagen-Derived Materials: Synthesis and Applications in Electrochemical Energy Storage and Conversion serves as an important resource for gaining a holistic understanding of the field and learning about the state of the art based on promising energy-related applications.

Book Electrochemical Energy Conversion and Storage

Download or read book Electrochemical Energy Conversion and Storage written by Yuping Wu and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This pioneering textbook on the topic provides a clear and well-structured description of the fundamental chemistry involved in these systems, as well as an excellent overview of the real-life practical applications. Prof. Holze is a well-known researcher and an experienced author who guides the reader with his didactic style, and readers can test their understanding with questions and answers throughout the text. Written mainly for advanced students in chemistry, physics, materials science, electrical engineering and mechanical engineering, this text is equally a valuable resource for scientists and engineers working in the field, both in academia and industry.

Book Supercapacitors

Download or read book Supercapacitors written by Francois Beguin and published by John Wiley & Sons. This book was released on 2013-04-02 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercapacitors are a relatively new energy storage system that provides higher energy density than dielectric capacitors and higher power density than batteries. They are particularly suited to applications that require energy pulses during short periods of time, e.g., seconds or tens of seconds. They are recommended for automobiles, tramways, buses, cranes, fork-lifts, wind turbines, electricity load leveling in stationary and transportation systems, etc. Despite the technological maturity of supercapacitors, there is a lack of comprehensive literature on the topic. Many high performance materials have been developed and new scientific concepts have been introduced. Taking into account the commercial interest in these systems and the new scientific and technological developments now is the ideal time to publish this book, capturing all this new knowledge. The book starts by giving an introduction to the general principles of electrochemistry, the properties of electrochemical capacitors, and electrochemical characterization techniques. Electrical double layer capacitors and pseudocapacitors are then discussed, followed by the various electrolyte systems. Modelling, manufacture of industrial capacitors, constraints, testing, and reliability as well as applications are also covered. 'Supercapacitors - Materials, Systems, and Applications' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.

Book Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies

Download or read book Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies written by Yun Zheng and published by CRC Press. This book was released on 2019-05-03 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies covers fundamentals, advanced conversion technologies, economic feasibility analysis, and future research directions in the field of CO2 conversion and utilization. This book emphasizes principles of various conversion technologies for CO2 reduction such as enzymatic conversion, mineralization, thermochemical, photochemical, and electrochemical processes. It addresses materials, components, assembly and manufacturing, degradation mechanisms, challenges, and development strategies. Applications of conversion technologies for CO2 reduction to produce useful fuels and chemicals in energy and industrial systems are discussed as solutions to reduce greenhouse effects and energy shortages. Particularly, the advanced materials and technology of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide cells (SOCs) are reviewed and the introduction, fundamentals, and some significant topics regarding this CO2 conversion process are discussed. This book provides a comprehensive and clear picture of advanced technologies in CO2 conversion and utilization. Written in a clear and detailed manner, it is suitable for students as well as industry professionals, researchers, and academics.

Book Electrochemical Energy Storage

Download or read book Electrochemical Energy Storage written by Jean-Marie Tarascon and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.

Book Electrolytes for Electrochemical Supercapacitors

Download or read book Electrolytes for Electrochemical Supercapacitors written by Cheng Zhong and published by CRC Press. This book was released on 2016-04-27 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrolytes for Electrochemical Supercapacitors provides a state-of-the-art overview of the research and development of novel electrolytes and electrolyte configurations and systems to increase the energy density of electrochemical supercapacitors. Comprised of chapters written by leading international scientists active in supercapacitor research