Download or read book Graphene Science Handbook written by Mahmood Aliofkhazraei and published by CRC Press. This book was released on 2016-04-21 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the Low Resistivity, High Mobility, and Zero Bandgap of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic
Download or read book Graphene Science Handbook Six Volume Set written by Mahmood Aliofkhazraei and published by CRC Press. This book was released on 2016-04-26 with total page 3379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is the strongest material ever studied and can be an efficient substitute for silicon. This six-volume handbook focuses on fabrication methods, nanostructure and atomic arrangement, electrical and optical properties, mechanical and chemical properties, size-dependent properties, and applications and industrialization. There is no other major reference work of this scope on the topic of graphene, which is one of the most researched materials of the twenty-first century. The set includes contributions from top researchers in the field and a foreword written by two Nobel laureates in physics. Volumes in the set: K20503 Graphene Science Handbook: Mechanical and Chemical Properties (ISBN: 9781466591233) K20505 Graphene Science Handbook: Fabrication Methods (ISBN: 9781466591271) K20507 Graphene Science Handbook: Electrical and Optical Properties (ISBN: 9781466591318) K20508 Graphene Science Handbook: Applications and Industrialization (ISBN: 9781466591332) K20509 Graphene Science Handbook: Size-Dependent Properties (ISBN: 9781466591356) K20510 Graphene Science Handbook: Nanostructure and Atomic Arrangement (ISBN: 9781466591370)
Download or read book High Power Impulse Magnetron Sputtering written by Daniel Lundin and published by Elsevier. This book was released on 2019-08-30 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications is an in-depth introduction to HiPIMS that emphasizes how this novel sputtering technique differs from conventional magnetron processes in terms of both discharge physics and the resulting thin film characteristics. Ionization of sputtered atoms is discussed in detail for various target materials. In addition, the role of self-sputtering, secondary electron emission and the importance of controlling the process gas dynamics, both inert and reactive gases, are examined in detail with an aim to generate stable HiPIMS processes. Lastly, the book also looks at how to characterize the HiPIMS discharge, including essential diagnostic equipment. Experimental results and simulations based on industrially relevant material systems are used to illustrate mechanisms controlling nucleation kinetics, column formation and microstructure evolution.
Download or read book Introduction to Surface Engineering written by P. A. Dearnley and published by Cambridge University Press. This book was released on 2017-01-16 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly illustrated reference work covers the three principal types of surface technologies that best protect engineering devices and products: diffusion technologies, deposition technologies, and other less commonly acknowledged surface engineering (SE) techniques. Various applications are noted throughout the text and additionally whole chapters are devoted to specific SE applications across the automotive, gas turbine engine (GTE), metal machining, and biomedical implant sectors. Along with the benefits of SE, this volume also critically examines SE's limitations. Materials degradation pathways - those which can and those which cannot be mitigated by SE - are rigorously explained. Written from a scientific, materials engineering perspective, this concise text is supported by high-quality images and photo-micrographs which show how surfaces can be engineered to overcome the limits of conventionally produced materials, even in complex or hostile operating environments. This book is a useful resource for undergraduate and postgraduate students as well as professional engineers.
Download or read book Photoelectron Spectroscopy written by Stefan Hüfner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date introduction to the field, treating in depth the electronic structures of atoms, molecules, solids and surfaces, together with brief descriptions of inverse photoemission, spin-polarized photoemission and photoelectron diffraction. Experimental aspects are considered throughout and the results carefully interpreted by theory. A wealth of measured data is presented in tabullar for easy use by experimentalists.
Download or read book SiC based Miniaturized Devices written by Stephen Edward Saddow and published by MDPI. This book was released on 2020-06-18 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS devices are found in many of today’s electronic devices and systems, from air-bag sensors in cars to smart phones, embedded systems, etc. Increasingly, the reduction in dimensions has led to nanometer-scale devices, called NEMS. The plethora of applications on the commercial market speaks for itself, and especially for the highly precise manufacturing of silicon-based MEMS and NEMS. While this is a tremendous achievement, silicon as a material has some drawbacks, mainly in the area of mechanical fatigue and thermal properties. Silicon carbide (SiC), a well-known wide-bandgap semiconductor whose adoption in commercial products is experiening exponential growth, especially in the power electronics arena. While SiC MEMS have been around for decades, in this Special Issue we seek to capture both an overview of the devices that have been demonstrated to date, as well as bring new technologies and progress in the MEMS processing area to the forefront. Thus, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on: (1) novel designs, fabrication, control, and modeling of SiC MEMS and NEMS based on all kinds of actuation mechanisms; and (2) new developments in applying SiC MEMS and NEMS in consumer electronics, optical communications, industry, medicine, agriculture, space, and defense.
Download or read book Cathodic Arcs written by André Anders and published by Springer Science & Business Media. This book was released on 2009-07-30 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cathodic arcs are among the longest studied yet least understood objects in science. Plasma-generating, tiny spots appear on the cathode; they are highly dynamic and hard to control. With an approach emphasizing the fractal character of cathode spots, strongly fluctuating plasma properties are described such as the presence of multiply charged ions that move with supersonic velocity. Richly illustrated, the book also deals with practical issues, such as arc source construction, macroparticle removal, and the synthesis of dense, well adherent coatings. The book spans a bridge from plasma physics to coatings technology based on energetic condensation, appealing to scientists, practitioners and graduate students alike.
Download or read book Recent Advances in Technology Research and Education written by Dumitru Luca and published by Springer. This book was released on 2017-09-08 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected contributions to the 16th International Conference on Global Research and Education Inter-Academia 2017 hosted by Alexandru Ioan Cuza University of Iași, Romania from 25 to 28 September 2017. It is the third volume in the series, following the editions from 2015 and 2016. Fundamental and applied research in natural sciences have led to crucial developments in the ongoing 4th global industrial revolution, in the course of which information technology has become deeply embedded in industrial management, research and innovation – and just as deeply in education and everyday life. Materials science and nanotechnology, plasma and solid state physics, photonics, electrical and electronic engineering, robotics and metrology, signal processing, e-learning, intelligent and soft computing have long since been central research priorities for the Inter-Academia Community (I-AC) – a body comprising 14 universities and research institutes from Japan and Central/East-European countries that agreed, in 2002, to coordinate their research and education programs so as to better address today’s challenges. The book is intended for use in academic, government, and industrial R&D departments as a reference tool in research and technology education. The 42 peer-reviewed papers were written by more than 119 leading scientists from 14 countries, most of them affiliated to the I-AC.
Download or read book Inorganic Chemistry written by William W. Porterfield and published by Academic Press. This book was released on 2013-04-12 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the few books available that uses unifying theoretical concepts to present inorganic chemistry at the advanced undergraduate and graduate levels--most texts are organized around the periodic table, while this one is structured after bonding models, structure types, and reaction patterns. But the real strength of Porterfield's Second Edition is its clear presentation of ample background description, especially in recent areas of development such as cluster molecules, industrial catalysis, and bio-inorganic chemistry. This information will enable students to understand most current journals, empowering them to stay abreast of the latest advances in the field. Specific improvements of the Second Edition include new chapters on materials-science applications and bioinorganic chemistry, an extended discussion of transition-metal applications (including cuprate superconductors), and extended Tanabe-Sugano diagrams. - Extended treatment of inorganic materials science--ceramics, refractories, magnetic materials, superconductors--in the context of solid-state chemistry - Extended coverage of biological systems and their chemical and physiological consequences--02 metabolism, N2 fixation, muscle action, iron storage, cisplatin and nucleic acid structural probes, and photosynthesis - Unusual structures and species--silatranes, metallacarboranes, alkalides and electrides, vapor-deposition species, proton and hybrid sponges, massive transition-metal clusters, and agostic ligands - Thorough examination of industrial processes using organometallic catalysts and their mechanisms - Entropy-driven reactions - Complete discussion of inorganic photochemistry
Download or read book Bulk Metallic Glasses written by C. Suryanarayana and published by CRC Press. This book was released on 2017-11-22 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.
Download or read book Advanced Applications of 2D Nanostructures written by Subhash Singh and published by Springer Nature. This book was released on 2021-08-21 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on both recent advances and the applications of two-dimensional (2D) nanomaterials in different fields. This book encapsulates all the aspects related to 2D nanomaterials and their applications. It provides scientific and technological insights on novel routes of design and fabrication of few layered nanostructures and their hetero structures based on a variety of 2-D layered materials. It also covers a wide range of industrial applications of 2D nanomaterials. It emphasizes on the detailing of the various characterization techniques used. The book will be a valuable reference for beginners, researchers, and professionals interested in nano-materials and allied fields.
Download or read book Superlubricity written by Ali Erdemir and published by Elsevier. This book was released on 2007-03-30 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superlubricity is defined as a sliding regime in which friction or resistance to sliding vanishes. It has been shown that energy can be conserved by further reducing/removing friction in moving mechanical systems and this book includes contributions from world-renowned scientists who address some of the most fundamental research issues in overcoming friction. Superlubricity reviews the latest methods and materials in this area of research that are aimed at removing friction in nano-to-micro scale machines and large scale engineering components. Insight is also given into the atomic-scale origins of friction in general and superlubricity while other chapters focus on experimental and practical aspects or impacts of superlubricity that will be very useful for broader industrial community.* Reviews the latest fundamental research in superlubricity today* Presents 'state-of-the-art' methods, materials, and experimental techniques* Latest developments in tribomaterials, coatings, and lubricants providing superlubricity
Download or read book Reactive Sputter Deposition written by Diederik Depla and published by Springer Science & Business Media. This book was released on 2008-06-24 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.
Download or read book Physical vapor deposition and thermal stability of hard oxide coatings written by Ludvig Landälv and published by Linköping University Electronic Press. This book was released on 2019-04-26 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state-of-the-art tools for machining metals are primarily based on a metal-ceramic composite (WC-Co) coated with different combinations of carbide, nitride, and oxide coatings. Combinations of these coating materials are optimized to withstand specific wear conditions. Oxide coatings, mainly α-Al2O3, are especially desired because of their high hot-hardness, chemical inertness with respect to the workpiece, and their low friction. The search for possible alloy elements, which may facilitate the deposition of such oxides by means of physical vapor deposition (PVD) techniques, has been the goal of this thesis. The sought alloy should form thermodynamically stable or metastable compounds, compatible with the temperature of use in metal cutting application. This thesis deals with process development and coating characterization of such new oxide alloy thin films, focusing on the Al-V-O, Al-Cr-Si-O, and Cr-Zr-O systems. Alloying aluminum oxide with iso-valent vanadium is a candidate for forming the desired alloys. Therefore, coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited with reactive sputter deposition. X-ray diffraction showed three different crystal structures depending on V-metal fraction in the coating: α-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate region, (63 - 42 at.% V), and a gamma-alumina-like solid solution at lower V-content, (18 and 7 at.%), were observed, the later was shifted to larger d-spacing compared to the pure γ-Al2O3 sample obtained if deposited with only Al-target. Annealing the Al-rich coatings in air resulted in formation of V2O5 crystals on the surface of the coating after annealing to 500 °C for 42 at.% V and 700 °C for 18 at.% V metal fraction respectively. The highest thermal stability was shown for pure γ-Al2O3-coating which transformed to α-Al2O3 after annealing to 1100° C. Highest hardness was observed for the Al-rich oxides, ~24 GPa. The hardness then decreases with increasing V-content, larger than 7 at.% V metal fraction. Doping the Al2O3 coating with 7 at.% V resulted in a significant surface smoothening compared to the binary oxide. The measured hardness after annealing in air decreased in conjunction with the onset of further oxidation of the coatings. This work increases the understanding of this complicated material system with respect to possible phases formed with pulsed DC magnetron sputtering deposition as well as their response to annealing in air. The inherent difficulties of depositing insulating oxide films with PVD, requiring a closed electrical circuit, makes the investigation of process stability an important part of this research. In this context, I investigated the influence of adding small amount of Si in Al-Cr cathode on the coating properties in a pulsed DC industrial cathodic arc system and the plasma characteristics, process parameters, and coating properties in a lab DC cathodic arc system. Si was chosen here due to a previous study showing improved erosion behavior of Al-Cr-Si over pure Al-Cr cathode without Si incorporation in the coating. The effect of Si in the Al-Cr cathode in the industrial cathodic arc system showed slight improvements on the cathode erosion but Si was found in all coatings where Si was added in the cathode. The Si addition promoted the formation of the B1-like metastable cubic oxide phase and the incorporation led to reduced or equal hardness values compared to the corresponding Si-free processes. The DC-arc plasma study on the same material system showed only small improvements in the cathode erosion and process stability (lower pressure and cathode voltage) when introducing 5 at.% Si in the Al70Cr30-cathode. The presence of volatile SiO species could be confirmed through plasma analysis, but the loss of Si through these species was negligible, since the coating composition matched the cathode composition also under these conditions. The positive effect of added Si on the process stability at the cathode surface, should be weighed against Si incorporation in the coating. This incorporation seems to lead to a reduction in mechanical properties in the as-deposited coatings and promote the formation of a B1-like cubic metastable oxide structure for the (Al,Cr)2O3 oxide. This formation may or may not be beneficial for the final application since literature indicates a slight stabilization of the metastable phase upon Si-incorporation, contrary to the effect of Cr, which stabilizes the α-phase. The thermal stability of alloys for metal cutting application is crucial for their use. Previous studies on another alloy system, Cr-Zr-O, had shown solid solution, for Cr-rich compositions in that material system, in the sought corundum structure. The thermal stability of α-Cr0.28Zr0.10O0.61 coating deposited by reactive radio frequency (RF)-magnetron sputtering at 500 °C was therefore investigated here after annealing in vacuum up to 870 °C. The annealed samples showed transformation of α-(Cr,Zr)2O3 and amorphous ZrOx-rich areas into tetragonal ZrO2 and bcc-Cr. The instability of the α-(Cr,Zr)2O3 is surprising and possibly related to the annealing being done under vacuum, facilitating the loss of oxygen. Further in situ synchrotron XRD annealing studies on the α-Cr0.28Zr0.10O0.61 coating in air and in vacuum showed increased stability for the air annealed sample up to at least 975 °C, accompanied with a slight increase in ex-situ measured nanohardness. The onset temperature for formation of tetragonal ZrO2 was similar to that for isothermally vacuum annealing. The synchrotron-vacuum annealed coating again decomposed into bcc-Cr and t-ZrO2, with an addition of monoclinic–ZrO2 due to grain growth. The stabilization of the room temperature metastable tetragonal ZrO2 phase, due to surface energy effects present with small grains sizes, may prove to be useful for metal cutting applications. The observed phase segregation of α-(Cr,Zr)2O3 and formation of tetragonal ZrO2 with corresponding increase in hardness for this pseudobinary oxide system also opens up design routes for pseudobinary oxides with tunable microstructural and mechanical properties.
Download or read book Handbook of Monochromatic XPS Spectra written by B. Vincent Crist and published by John Wiley & Sons. This book was released on 2000-10-19 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: These three volumes provide comprehensive information about the instrument, the samples, and the methods used to collect the spectra. The spectra are presented on a landscape format and cover a wide variety of elements,polymers, semiconductors, and other materials. Offers a clear presentation of spectra with the rightamount of experimental detail. All of the experiments have been conducted under controlled conditions on the same instrument by aworld-renowned expert.
Download or read book Fiber Optic Sensors written by Ignacio R. Matias and published by Springer. This book was released on 2016-11-01 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes important recent developments in fiber optic sensor technology and examines established and emerging applications in a broad range of fields and markets, including power engineering, chemical engineering, bioengineering, biomedical engineering, and environmental monitoring. Particular attention is devoted to niche applications where fiber optic sensors are or soon will be able to compete with conventional approaches. Beyond novel methods for the sensing of traditional parameters such as strain, temperature, and pressure, a variety of new ideas and concepts are proposed and explored. The significance of the advent of extended infrared sensors is discussed, and individual chapters focus on sensing at THz frequencies and optical sensing based on photonic crystal structures. Another important topic is the resonances generated when using thin films in conjunction with optical fibers, and the enormous potential of sensors based on lossy mode resonances, surface plasmon resonances, and long-range surface exciton polaritons. Detailed attention is also paid to fiber Bragg grating sensors and multimode interference sensors. Each chapter is written by an acknowledged expert in the subject under discussion.
Download or read book Ferroelectricity in Doped Hafnium Oxide written by Uwe Schroeder and published by Woodhead Publishing. This book was released on 2019-03-27 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. - Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices - Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more - Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face