EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Carbon Dioxide selective Membranes and Their Applications in Hydrogen Processing

Download or read book Carbon Dioxide selective Membranes and Their Applications in Hydrogen Processing written by Jian Zou and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: In this work, new CO2-selective membranes were synthesized and their applications for fuel cell fuel processing and synthesis gas purification were investigated. In order to enhance CO2 transport across membranes, the synthesized membranes contained both mobile and fixed site carriers in crosslinked poly(vinyl alcohol). The effects of crosslinking, membrane composition, feed pressure, water content, and temperature on transport properties were investigated. The membranes have shown a high permeability and a good CO2/H2 selectivity and maintained their separation performance up to 170°C. One type of these membranes showed a permeability of 8000 Barrers and a CO2/H2 selectivity of 290 at 110°C. The applications of the synthesized membranes were demonstrated in a CO2-removal experiment, in which the CO2 concentration in retentate was decreased from 17% to 10 ppm. With such membranes, there are several options to reduce the CO concentration of synthesis gas. One option is to develop a water gas shift (WGS) membrane reactor, in which both WGS reaction and CO2-removal take place. Another option is to use a proposed process consisting of a CO2-removal membrane followed by a conventional WGS reactor. In the membrane reactor, a CO concentration of less than 10 ppm and a H2 concentration of greater than 50% (on dry basis) were achieved at various flow rates of a simulated autothermal reformate. In the proposed CO2-removal/WGS process, with more than 99.5% CO2 removed from the synthesis gas, the CO concentration was decreased from 1.2% to less than 10 ppm (dry), which is the requirement for fuel cells. The WGS reactor had a gas hourly space velocity of 7650 h−1 at 150°C and the H2 concentration in the outlet was more than 54.7% (dry). The applications of the synthesized CO2-selective membranes for high-pressure synthesis gas purification were also studied. We studied the synthesized membranes at feed pressures 200 psia and temperatures ranging from 100-150°C. The effects of feed pressure, microporous support, temperature, and permeate pressure were investigated using a simulated synthesis gas containing 20% carbon dioxide and 80% hydrogen.

Book Advanced Membrane Technology and Applications

Download or read book Advanced Membrane Technology and Applications written by Norman N Li and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 1105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced membranes-from fundamentals and membrane chemistry to manufacturing and applications A hands-on reference for practicing professionals, Advanced Membrane Technology and Applications covers the fundamental principles and theories of separation and purification by membranes, the important membrane processes and systems, and major industrial applications. It goes far beyond the basics to address the formulation and industrial manufacture of membranes and applications. This practical guide: Includes coverage of all the major types of membranes: ultrafiltration; microfiltration; nanofiltration; reverse osmosis (including the recent high-flux and low-pressure membranes and anti-fouling membranes); membranes for gas separations; and membranes for fuel cell uses Addresses six major topics: membranes and applications in water and wastewater; membranes for biotechnology and chemical/biomedical applications; gas separations; membrane contractors and reactors; environmental and energy applications; and membrane materials and characterization Includes discussions of important strategic issues and the future of membrane technology With chapters contributed by leading experts in their specific areas and a practical focus, this is the definitive reference for professionals in industrial manufacturing and separations and research and development; practitioners in the manufacture and applications of membranes; scientists in water treatment, pharmaceutical, food, and fuel cell processing industries; process engineers; and others. It is also an excellent resource for researchers in industry and academia and graduate students taking courses in separations and membranes and related fields.

Book Palladium Membrane Technology for Hydrogen Production  Carbon Capture and Other Applications

Download or read book Palladium Membrane Technology for Hydrogen Production Carbon Capture and Other Applications written by A Doukelis and published by Elsevier. This book was released on 2014-10-20 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thanks to their outstanding hydrogen selectivity, palladium membranes have attracted extensive R&D interest. They are a potential breakthrough technology for hydrogen production and also have promising applications in the areas of thermochemical biorefining. This book summarises key research in palladium membrane technologies, with particular focus on the scale-up challenges. After an introductory chapter, Part one reviews the fabrication of palladium membranes. Part two then focuses on palladium membrane module and reactor design. The final part of the book reviews the operation of palladium membranes for synthesis gas/hydrogen production, carbon capture and other applications. - Review of manufacture and design issues for palladium membranes - Discussion of the applications of palladium membrane technology, including solar steam reforming, IGCC plants, NGCC plants, CHP plants and hydrogen production - Examples of the technology in operation

Book Current Trends and Future Developments on  Bio   Membranes

Download or read book Current Trends and Future Developments on Bio Membranes written by Angelo Basile and published by Elsevier. This book was released on 2018-07-18 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current Trends and Future Developments on (Bio-) Membranes: Carbon Dioxide Separation/Capture by Using Membranes explores the unique property of membranes to separate gases with different physical and chemical properties. The book covers both polymeric and inorganic materials for CO2 separation and explains their mechanism of action, allowing for the development and most appropriate and efficient processes. It also lists the advantages of using membranes instead of other separation techniques, i.e., their low operating costs and low energy consumption. This book offers a unique opportunity for scientists working in the field of membrane technology for CO2 separation and capture. - Outlines numerous membrane-based technologies for CO2 separation and capture - Lists new, advanced separation techniques and production processes - Includes various applications, modelling, and the economic considerations of each process - Covers advanced techniques for the separation of CO2 in natural gas

Book Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications

Download or read book Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications written by Angelo Basile and published by Woodhead Publishing. This book was released on 2011-09 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in membrane materials, selective membrane design, and computer modeling and simulation have contributed greatly to the application of advanced membranes in conventional and alternative power sectors, as well as to clean industry applications. This book presents a comprehensive review of membrane science and technology.

Book Membrane Engineering for the Treatment of Gases

Download or read book Membrane Engineering for the Treatment of Gases written by Enrico Drioli and published by Royal Society of Chemistry. This book was released on 2011-07-06 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Membranes already have important applications in artificial organs, the processing of biotechnological products, food manufacture, waste water treatment, and seawater desalination. Their uses in gaseous mixture separations are, however, far from achieving their full potential. Separation of air components, natural gas dehumidification and sweeting, separation and recovery of CO2 from biogas, and H2 from refinery gases are all examples of current industrial applications. The use of membranes for reducing the greenhouse effect and improving energy efficiency has also been suggested. New process intensification strategies in the petrochemical industry have opened up another growth area for gas separation membrane systems and membrane reactors. This two volume set presents the state-of-the-art in membrane engineering for the separation of gases. It addresses future developments in carbon capture and utilization, H2 production and purification, and O2/N2 separation. Topics covered include the: applications of membrane gas separation in the petrochemical industry; implementation of membrane processes for post-combustion capture; commercial applications of membranes in gas separations; simulation of membrane systems for CO2 capture; design and development of membrane reactors for industrial applications; Pd-based membranes in hydrogen production; modelling and simulation of membrane reactors for hydrogen production and purification; novel hybrid membrane/pressure swing adsorption process for gas separation; molecular dynamics as a new tool for membrane design, and physical aging of membranes for gas separations. Volume 2 looks at problems combined with membrane reactors.

Book Membrane Engineering for the Treatment of Gases

Download or read book Membrane Engineering for the Treatment of Gases written by Enrico Drioli and published by Royal Society of Chemistry. This book was released on 2011-07-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Membranes already have important applications in artificial organs, the processing of biotechnological products, food manufacture, waste water treatment, and seawater desalination. Their uses in gaseous mixture separations are, however, far from achieving their full potential. Separation of air components, natural gas dehumidification and sweeting, separation and recovery of CO2 from biogas, and H2 from refinery gases are all examples of current industrial applications. The use of membranes for reducing the greenhouse effect and improving energy efficiency has also been suggested. New process intensification strategies in the petrochemical industry have opened up another growth area for gas separation membrane systems and membrane reactors. This two volume set presents the state-of-the-art in membrane engineering for the separation of gases. It addresses future developments in carbon capture and utilization, H2 production and purification, and O2/N2 separation. Topics covered include the: applications of membrane gas separation in the petrochemical industry; implementation of membrane processes for post-combustion capture; commercial applications of membranes in gas separations; simulation of membrane systems for CO2 capture; design and development of membrane reactors for industrial applications; Pd-based membranes in hydrogen production; modelling and simulation of membrane reactors for hydrogen production and purification; novel hybrid membrane/pressure swing adsorption process for gas separation; molecular dynamics as a new tool for membrane design, and physical aging of membranes for gas separations. Volume 1 focuses predominantly on problems relating to membranes.

Book Membrane Contactor Technology

Download or read book Membrane Contactor Technology written by Mohammad Younas and published by John Wiley & Sons. This book was released on 2022-04-18 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: An eye-opening exploration of membrane contactors from a group of industry leaders In Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture, an expert team of researchers delivers an up-to-date and insightful explanation of membrane contactor technology, including transport phenomena, design aspects, and diverse process applications. The book also includes explorations of membrane synthesis, process, and module design, as well as rarely discussed process modeling and simulation techniques. The authors discuss the technical and economic aspects of this increasingly important technology and examine the geometry, flow, energy and mass transport, and design aspects of membrane contactor modules. They also cover a wide range of application opportunities for this technology, from the materials sciences to process engineering. Membrane Contactor Technology also includes: A thorough introduction to the membrane contactor extraction process, including dispersion-free membrane extraction processes and supported liquid membrane processes Comprehensive explorations of membrane transport theory, including discussions of diffusional mass and heat transfer modeling, as well as numerical modeling In-depth examinations of module configuration and geometry, including design and flow configuration Practical discussions of modes or operation, including membrane distillation, osmotic evaporation, and forward osmosis Perfect for process engineers, biotechnologists, water chemists, and membrane scientists, Membrane Contactor Technology also belongs in the libraries of chemical engineers, polymer chemists, and chemists working in the environmental industry.

Book Membrane Technologies and Applications

Download or read book Membrane Technologies and Applications written by Kaustubha Mohanty and published by CRC Press. This book was released on 2011-12-19 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Membrane technologies play an increasingly important role in unit operations for resource recovery, pollution prevention, and energy production, as well as environmental monitoring and quality control. They are also key component technologies of fuel cells and bioseparation applications. Membrane Technologies and Applications provides essential data and background information on various dimensions of membrane technologies, with a major focus on their practical application. Membranes of inorganic materials offer cost-effective solutions for simple to complex separation problems. This book is designed for anyone interested in water and wastewater treatment, membrane suppliers, as well as students and academics studying the field.

Book Production of Hydrogen from Renewable Resources

Download or read book Production of Hydrogen from Renewable Resources written by Zhen Fang and published by Springer. This book was released on 2015-11-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides state-of-the-art reviews, current research and prospects of producing hydrogen using bio, thermal and electrochemical methods and covers hydrogen separation, storage and applications. Hydrogen produced from biomass offers a clean and renewable energy source and a promising energy carrier that will supplement or replace fossil fuels in the future. The book is intended as a reference work for researchers, academics and industrialists working in the chemical and biological sciences, engineering, renewable resources and sustainability. Readers will find a wealth of information in the text that is both useful for the practical development of hydrogen systems and essential for assessing hydrogen production by bioelectrochemical, electrochemical, fermentation, gasification, pyrolysis and solar means, applied to many forms of biomass. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.

Book Hydrogen Production Processes in Refining Technology

Download or read book Hydrogen Production Processes in Refining Technology written by James G. Speight and published by CRC Press. This book was released on 2024-06-26 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the various approaches to the production of hydrogen in petroleum refining. The need for hydrogen is addressed, and then the differences between the processes are detailed. This practical and accessible guide is written for managers, professionals, and technicians as well as graduate students transitioning into the refining industry. Key Features: Describes hydrogen purification methods and processes, providing relevant process data and fully describing process operations Describes hydrogen purification methods and processes, detailing the types of feedstock that can be used and exploring the options and parameters of each process Details commercial processes, including gasification pretreatment and reactions and considers next-generation processes and developments

Book Single Membrane Reactor Configuration for Separation of Hydrogen  Carbon Dioxide and Hydrogen Sulfide

Download or read book Single Membrane Reactor Configuration for Separation of Hydrogen Carbon Dioxide and Hydrogen Sulfide written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H2 product and a pure CO2 permeate stream that is ready for sequestration. This project focused on developing a new class of CO2-selective membranes for this new process concept. Several approaches to make CO2-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO2 permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO2 permeation rate could be measured, probably due to very slow CO2 diffusion in the solid state carbonates. To improve the permeation of CO2, one approach is to make membranes containing liquid or molten carbonates. Several different types of dual-phase membranes were fabricated and tested for their CO2 permeation in reducing conditions without the presence of oxygen. Although the flux was quite low, on the order of 0.01-0.001 cc STP/cm2/min, the selectivity of CO2/He was almost infinite at temperatures of about 800 C.A different type of dual-phase membrane prepared by Arizona State University (ASU) was also tested at GTI for CO2 permeation. The measured CO2 fluxes were 0.015 and 0.02 cc STP/cm2/min at 750 and 830 C, respectively. These fluxes were higher than the previous flux obtained ((almost equal to)0.01 cc STP/cm2/min) using the dual-phase membranes prepared by GTI. Further development in membrane development should be conducted to improve the CO2 flux. ASU has also focused on high temperature permeation/separation experiments to confirm the carbon dioxide separation capabilities of the dual-phase membranes with La{sup 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF6482) supports infiltrated with a Li/Na/K molten carbonate mixture (42.5/32.5/25.0 mole %). The permeation experiments indicated that the addition of O2 does improve the permeance of CO2 through the membrane. A simplified membrane reactor model was developed to evaluate the performance of the process. However, the simplified model did not allow the estimation of membrane transport area, an important parameter for evaluating the feasibility of the proposed membrane reactor technology. As a result, an improved model was developed. Results of the improved membrane reactor model show that the membrane shift reaction has promise as a means to simplify the production of a clean stream of hydrogen and a clean stream of carbon dioxide. The focus of additional development work should address the large area required for the CO2 membrane as identified in the modeling calculations. Also, a more detailed process flow diagram should be developed that includes integration of cooling and preheating feed streams as well as particulate removal so that steam and power generation could be optimized. For the tubular membranes that were fabricated by solution impregnation with metal carbonates, difficulties were encountered in removing the impurity salts that were trapped inside the porous support tube. The membrane tube would continue losing weight even after being heated up to 500 C in air and could not maintain its nonporous characteristics. This approach was therefore abandoned. Dual-phase membranes with molten carbonates were subsequently shown to have CO2 permeability in reducing conditions without the presence of oxygen; they were also tested for H2S permeation. Permeation tests were conducted with a gas feed composition consisting of 33.6% CO2, 8.4% He, 57.6% H2 and 0.4% H2S at temperatures between 820 and 850 C and a pressure of 1 bar.

Book Pd based Membranes

Download or read book Pd based Membranes written by Thijs Peters and published by MDPI. This book was released on 2019-03-26 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.

Book Handbook of Membrane Separations

Download or read book Handbook of Membrane Separations written by Anil K. Pabby and published by CRC Press. This book was released on 2023-12-22 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of the Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications provides a comprehensive discussion of membrane applications. Fully updated to include the latest advancements in membrane science and technology, it is a one-of-its-kind overview of the existing literature. This fully illustrated handbook is written by experts and professionals in membrane applications from around the world. Key Features: Includes entirely new chapters on organic solvent-resistant nanofiltration, membrane condensers, membrane-reactors in hydrogen production, membrane materials for haemodialysis, and integrated membrane distillation Covers the full spectrum of membrane technology and its advancements Explores membrane applications in a range of fields, from biotechnological and food processing to industrial waste management and environmental engineering This book will appeal to both newcomers to membrane science as well as engineers and scientists looking to expand their knowledge on upcoming advancements in the field.

Book Facilitated Transport Membranes  FTMs  for CO2 Capture  Overview and Future Trends

Download or read book Facilitated Transport Membranes FTMs for CO2 Capture Overview and Future Trends written by Sarah Farrukh and published by Springer Nature. This book was released on 2023-02-13 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the importance of Facilitated Transport Membranes (FTMs) for the application of carbon capture, covering its introduction, gas transport phenomena and models, reaction mechanisms, industrial applications such as bio-gas upgradation, flue gas separation, hydrogen gas and natural gas purification, fabrication methods of both FTMs and their carrier mediums, testing/characterization techniques, techno-analysis with up-to-date trends and the future outlooks. Climate change and environmental impacts are resulted due to greenhouse gases, particularly CO2. The industrial revolution is currently causing the augmented emission of greenhouse gases. Therefore, various technologies are being looked at to overcome these problems. In which, membrane technology is key among them and is envisaged for many industrial applications, especially for gas separations and carbon capture. Considering this, FTMs are being actively investigated due to their remarkable gas separation performance. This book describes the working principle of FTMs and includes case studies to explore their impact on different industrial applications. Also, the book highlights how FTMs are reshaping science to capture CO2 for reducing climate and environmental impacts.

Book Membrane Engineering

Download or read book Membrane Engineering written by Enrico Drioli and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern membrane science and technology aids engineers in developing and designing more efficient and environmentally-friendly processes. The optimal material and membrane selection as well as applications in the many involved industries are provided. This work is the ideal introduction for engineers working in membrane science and applications (wastewater, desalination, adsorption, and catalysis), process engineers in separation science, biologists and biochemists, environmental scientists, and most of all students. Its multidisciplinary approach also stimulates thinking of hybrid technologies for current and future life-saving applications (artificial organs, drug delivery).

Book Carbon Membrane Technology

Download or read book Carbon Membrane Technology written by Xuezhong He and published by CRC Press. This book was released on 2020-11-25 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon membranes have great advantages of strong mechanical strength and high chemical stabilities, as well as high separation performance to reach the industrial attractive region. Further improvement on membrane performance can potentially offset the relatively high production cost compared to polymeric membranes. However, there are still some challenges related to fabrication of asymmetric carbon membranes, the controlling of structure and pore-size and module up-scaling for commercial application. The aim of this book is to provide the fundamentals on carbon membrane materials for the young researchers and engineers to develop frontier membrane materials for energy efficient separation process. This book describes the status and perspectives of both self-supported and supported carbon membranes from fundamentals to applications. The key steps on the development of high performance carbon membranes including precursor selection, tuning carbon membrane structure and regeneration are discussed. In the end, different potential applications both in gas and liquids separation are well described, and the future directions for carbon membrane development were pointed out. To this end, membrane science and engineering are set to play crucial roles as enabling technologies to provide energy efficient and cost-effective future solutions for energy and environment related processes. Based on this approach the research projects which are trying to find attractive carbon materials in our days are many. The published papers, per year, in the topic of carbon membranes, especially for biogas upgrading, natural gas sweetening and hydrogen purification, are numerous with very high impact. However, only few are the books which include relevant to the topic of carbon membrane technology. This book offers the condensed and interdisciplinary knowledge on carbon membranes, and provides the opportunity to the scientists who are working in the field of carbon membrane technology for gas and liquid separations to present, share, and discuss their contributions within the membrane community.